#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/TALCS_corpus # You can find three directories:train_set, dev_set, and test_set. # You can get it from https://ai.100tal.com/dataset # - dev_set # - test_set # - train_set # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bbpe_xxx, # data/lang_bbpe_yyy if the array contains xxx, yyy vocab_sizes=( # 2000 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # Before you run this script, you must get the TAL_CSASR dataset # from https://ai.100tal.com/dataset if [ ! -d $dl_dir/tal_csasr/TALCS_corpus ]; then mv $dl_dir/TALCS_corpus $dl_dir/tal_csasr fi # If you have pre-downloaded it to /path/to/TALCS_corpus, # you can create a symlink # # ln -sfv /path/to/TALCS_corpus $dl_dir/tal_csasr # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/musan # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare tal_csasr manifest" # We assume that you have downloaded the TALCS_corpus # to $dl_dir/tal_csasr if [ ! -f data/manifests/tal_csasr/.manifests.done ]; then mkdir -p data/manifests/tal_csasr lhotse prepare tal-csasr $dl_dir/tal_csasr data/manifests/tal_csasr touch data/manifests/tal_csasr/.manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then log "It may take 6 minutes" mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for tal_csasr" if [ ! -f data/fbank/.tal_csasr.done ]; then mkdir -p data/fbank ./local/compute_fbank_tal_csasr.py touch data/fbank/.tal_csasr.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare char based lang" lang_char_dir=data/lang_char mkdir -p $lang_char_dir # Download BPE models trained with LibriSpeech # Here we use the BPE model with 5000 units trained with Librispeech. # You can also use other BPE models if available. if [ ! -f $lang_char_dir/bpe.model ]; then wget -O $lang_char_dir/bpe.model \ https://huggingface.co/luomingshuang/bpe_models_trained_with_Librispeech/resolve/main/lang_bpe_500/bpe.model fi # we extract text from manifests rather than the label.txt in corpus, because # the texts in manifests have been normalized in lhotse. if [ ! -f $lang_char_dir/text ]; then gunzip -c data/manifests/tal_csasr/tal_csasr_supervisions_train_set.jsonl.gz \ | grep -o 'text":\s[^,]*' | sed 's/text": "//g;s/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text_train gunzip -c data/manifests/tal_csasr/tal_csasr_supervisions_dev_set.jsonl.gz \ | grep -o 'text":\s[^,]*' | sed 's/text": "//g;s/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text_dev gunzip -c data/manifests/tal_csasr/tal_csasr_supervisions_test_set.jsonl.gz \ | grep -o 'text":\s[^,]*' | sed 's/text": "//g;s/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text_test for r in text_train text_dev text_test ; do cat $lang_char_dir/$r >> $lang_char_dir/text done fi # Prepare words.txt # We assume you have installed jieba, if not, please install # it using: pip install jieba if [ ! -f $lang_char_dir/words.txt ]; then python -m jieba $lang_char_dir/text | sed 's/\///g;s/\s\+/ /g' > $lang_char_dir/text.seg (echo ' 0'; echo '!SIL 1'; echo ' 2'; echo ' 3';) \ > $lang_char_dir/words.txt cat $lang_char_dir/text.seg | sed 's/ /\n/g' | sort -u | sed '/^$/d' \ | awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt num_lines=$(< $lang_char_dir/words.txt wc -l) (echo "#0 $num_lines"; echo " $(($num_lines + 1))"; echo " $(($num_lines + 2))";) \ >> $lang_char_dir/words.txt fi # Tokenize text with BPE model python ./local/tokenize_with_bpe_model.py \ --input $lang_char_dir/text \ --output $lang_char_dir/text_with_bpe \ --bpe-model $lang_char_dir/bpe.model if [ ! -f $lang_char_dir/L_disambig.pt ]; then python local/prepare_char.py fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 7: Prepare Byte BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bbpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp $lang_char_dir/words.txt $lang_dir cp $lang_char_dir/text $lang_dir if [ ! -f $lang_dir/bbpe.model ]; then ./local/train_bbpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/text fi done fi