## Results ### Switchboard BPE training results (Conformer-CTC) #### 2023-09-04 The best WER, as of 2023-09-04, for the Switchboard is below Results using attention decoder are given as: | | eval2000-swbd | eval2000-callhome | eval2000-avg | |--------------------------------|-----------------|---------------------|--------------| | `conformer_ctc` | 9.48 | 17.73 | 13.67 | Decoding results and models can be found here: https://huggingface.co/zrjin/icefall-asr-swbd-conformer-ctc-2023-8-26 #### 2023-06-27 The best WER, as of 2023-06-27, for the Switchboard is below Results using HLG decoding + n-gram LM rescoring + attention decoder rescoring: | | eval2000 | rt03 | |--------------------------------|------------|--------| | `conformer_ctc` | 30.80 | 32.29 | Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are: ##### eval2000 | ngram_lm_scale | attention_scale | |----------------|-----------------| | 0.9 | 1.1 | ##### rt03 | ngram_lm_scale | attention_scale | |----------------|-----------------| | 0.9 | 1.9 | To reproduce the above result, use the following commands for training: ```bash cd egs/swbd/ASR ./prepare.sh export CUDA_VISIBLE_DEVICES="0,1" ./conformer_ctc/train.py \ --max-duration 120 \ --num-workers 8 \ --enable-musan False \ --world-size 2 \ --num-epochs 100 ``` and the following command for decoding: ```bash ./conformer_ctc/decode.py \ --epoch 99 \ --avg 10 \ --max-duration 50 ``` #### 2023-06-26 The best WER, as of 2023-06-26, for the Switchboard is below Results using HLG decoding + n-gram LM rescoring + attention decoder rescoring: | | eval2000 | rt03 | |--------------------------------|------------|--------| | `conformer_ctc` | 33.37 | 35.06 | Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are: ##### eval2000 | ngram_lm_scale | attention_scale | |----------------|-----------------| | 0.3 | 2.5 | ##### rt03 | ngram_lm_scale | attention_scale | |----------------|-----------------| | 0.7 | 1.3 | To reproduce the above result, use the following commands for training: ```bash cd egs/swbd/ASR ./prepare.sh export CUDA_VISIBLE_DEVICES="0,1" ./conformer_ctc/train.py \ --max-duration 120 \ --num-workers 8 \ --enable-musan False \ --world-size 2 \ ``` and the following command for decoding: ```bash ./conformer_ctc/decode.py \ --epoch 55 \ --avg 1 \ --max-duration 50 ``` For your reference, the nbest oracle WERs are: | | eval2000 | rt03 | |--------------------------------|------------|--------| | `conformer_ctc` | 25.64 | 26.84 |