#!/usr/bin/env bash # Copyright 2022 Johns Hopkins University (Amir Hussein) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) set -eou pipefail nj=30 stage=7 stop_stage=1000 # We assume dl_dir (download dir) contains the following # directories and files. # # - $dl_dir/mgb2 # # You can download the data from # # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech # # Note: MGB2 is not available for direct # download, however you can fill out the form and # download it from https://arabicspeech.org/mgb2 dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 5000 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/MGB2, # you can create a symlink # # ln -sfv /path/to/mgb2 $dl_dir/MGB2 # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare mgb2 manifest" # We assume that you have downloaded the mgb2 corpus # to $dl_dir/mgb2 mkdir -p data/manifests lhotse prepare mgb2 $dl_dir/mgb2 data/manifests fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for mgb2" mkdir -p data/fbank ./local/compute_fbank_mgb2.py # shufling the data gunzip -c data/fbank/cuts_train.jsonl.gz | shuf | gzip -c > data/fbank/cuts_train_shuf.jsonl.gz fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" mkdir -p data/fbank ./local/compute_fbank_musan.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" if [[ ! -e download/lm/train/text ]]; then # export train text file to build grapheme lexicon lhotse kaldi export \ data/manifests/mgb2_recordings_train.jsonl.gz \ data/manifests/mgb2_supervisions_train.jsonl.gz \ download/lm/train fi lang_dir=data/lang_phone mkdir -p $lang_dir ./local/prep_mgb2_lexicon.sh python local/prepare_mgb2_lexicon.py $dl_dir/lm/grapheme_lexicon.txt $dl_dir/lm/lexicon.txt (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/lexicon.txt | sort | uniq > $lang_dir/lexicon.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/words.txt $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" files=$( find "$dl_dir/lm/train" -name "text" ) for f in ${files[@]}; do cat $f | cut -d " " -f 2- | sed -r '/^\s*$/d' done > $lang_dir/transcript_words.txt fi ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir fi done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare bigram P" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} if [ ! -f $lang_dir/transcript_tokens.txt ]; then ./local/convert_transcript_words_to_tokens.py \ --lexicon $lang_dir/lexicon.txt \ --transcript $lang_dir/transcript_words.txt \ --oov "" \ > $lang_dir/transcript_tokens.txt fi if [ ! -f $lang_dir/P.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 2 \ -text $lang_dir/transcript_tokens.txt \ -lm $lang_dir/P.arpa fi if [ ! -f $lang_dir/P.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_dir/tokens.txt" \ --disambig-symbol='#0' \ --max-order=2 \ $lang_dir/P.arpa > $lang_dir/P.fst.txt fi done fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare G" # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/G.arpa python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $lang_dir/G.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring ./shared/make_kn_lm.py \ -ngram-order 4 \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/4-gram.arpa python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ $lang_dir/4-gram.arpa > data/lm/G_4_gram.fst.txt fi done fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir done fi