#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=-1 stop_stage=100 dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: build monotonic_align lib (used by vits and matcha recipes)" for recipe in vits matcha; do if [ ! -d $recipe/monotonic_align/build ]; then cd $recipe/monotonic_align python3 setup.py build_ext --inplace cd ../../ else log "monotonic_align lib for $recipe already built" fi done fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # The directory $dl_dir/LJSpeech-1.1 will contain: # - wavs, which contains the audio files # - metadata.csv, which provides the transcript text for each audio clip # If you have pre-downloaded it to /path/to/LJSpeech-1.1, you can create a symlink # # ln -sfv /path/to/LJSpeech-1.1 $dl_dir/LJSpeech-1.1 # if [ ! -d $dl_dir/LJSpeech-1.1 ]; then lhotse download ljspeech $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare LJSpeech manifest" # We assume that you have downloaded the LJSpeech corpus # to $dl_dir/LJSpeech-1.1 mkdir -p data/manifests if [ ! -e data/manifests/.ljspeech.done ]; then lhotse prepare ljspeech $dl_dir/LJSpeech-1.1 data/manifests touch data/manifests/.ljspeech.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Compute spectrogram for LJSpeech (used by ./vits)" mkdir -p data/spectrogram if [ ! -e data/spectrogram/.ljspeech.done ]; then ./local/compute_spectrogram_ljspeech.py touch data/spectrogram/.ljspeech.done fi if [ ! -e data/spectrogram/.ljspeech-validated.done ]; then log "Validating data/spectrogram for LJSpeech (used by ./vits)" python3 ./local/validate_manifest.py \ data/spectrogram/ljspeech_cuts_all.jsonl.gz touch data/spectrogram/.ljspeech-validated.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare phoneme tokens for LJSpeech (used by ./vits)" # We assume you have installed piper_phonemize and espnet_tts_frontend. # If not, please install them with: # - piper_phonemize: pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html, # - espnet_tts_frontend, `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/ if [ ! -e data/spectrogram/.ljspeech_with_token.done ]; then ./local/prepare_tokens_ljspeech.py --in-out-dir ./data/spectrogram mv data/spectrogram/ljspeech_cuts_with_tokens_all.jsonl.gz \ data/spectrogram/ljspeech_cuts_all.jsonl.gz touch data/spectrogram/.ljspeech_with_token.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Split the LJSpeech cuts into train, valid and test sets (used by vits)" if [ ! -e data/spectrogram/.ljspeech_split.done ]; then lhotse subset --last 600 \ data/spectrogram/ljspeech_cuts_all.jsonl.gz \ data/spectrogram/ljspeech_cuts_validtest.jsonl.gz lhotse subset --first 100 \ data/spectrogram/ljspeech_cuts_validtest.jsonl.gz \ data/spectrogram/ljspeech_cuts_valid.jsonl.gz lhotse subset --last 500 \ data/spectrogram/ljspeech_cuts_validtest.jsonl.gz \ data/spectrogram/ljspeech_cuts_test.jsonl.gz rm data/spectrogram/ljspeech_cuts_validtest.jsonl.gz n=$(( $(gunzip -c data/spectrogram/ljspeech_cuts_all.jsonl.gz | wc -l) - 600 )) lhotse subset --first $n \ data/spectrogram/ljspeech_cuts_all.jsonl.gz \ data/spectrogram/ljspeech_cuts_train.jsonl.gz touch data/spectrogram/.ljspeech_split.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Generate token file" # We assume you have installed piper_phonemize and espnet_tts_frontend. # If not, please install them with: # - piper_phonemize: refer to https://github.com/rhasspy/piper-phonemize, # could install the pre-built wheels from https://github.com/csukuangfj/piper-phonemize/releases/tag/2023.12.5 # - espnet_tts_frontend, `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/ if [ ! -e data/tokens.txt ]; then ./local/prepare_token_file.py --tokens data/tokens.txt fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Generate fbank (used by ./matcha)" mkdir -p data/fbank if [ ! -e data/fbank/.ljspeech.done ]; then ./local/compute_fbank_ljspeech.py touch data/fbank/.ljspeech.done fi if [ ! -e data/fbank/.ljspeech-validated.done ]; then log "Validating data/fbank for LJSpeech (used by ./matcha)" python3 ./local/validate_manifest.py \ data/fbank/ljspeech_cuts_all.jsonl.gz touch data/fbank/.ljspeech-validated.done fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare phoneme tokens for LJSpeech (used by ./matcha)" # We assume you have installed piper_phonemize and espnet_tts_frontend. # If not, please install them with: # - piper_phonemize: pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html, # - espnet_tts_frontend, `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/ if [ ! -e data/fbank/.ljspeech_with_token.done ]; then ./local/prepare_tokens_ljspeech.py --in-out-dir ./data/fbank mv data/fbank/ljspeech_cuts_with_tokens_all.jsonl.gz \ data/fbank/ljspeech_cuts_all.jsonl.gz touch data/fbank/.ljspeech_with_token.done fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Split the LJSpeech cuts into train, valid and test sets (used by ./matcha)" if [ ! -e data/fbank/.ljspeech_split.done ]; then lhotse subset --last 600 \ data/fbank/ljspeech_cuts_all.jsonl.gz \ data/fbank/ljspeech_cuts_validtest.jsonl.gz lhotse subset --first 100 \ data/fbank/ljspeech_cuts_validtest.jsonl.gz \ data/fbank/ljspeech_cuts_valid.jsonl.gz lhotse subset --last 500 \ data/fbank/ljspeech_cuts_validtest.jsonl.gz \ data/fbank/ljspeech_cuts_test.jsonl.gz rm data/fbank/ljspeech_cuts_validtest.jsonl.gz n=$(( $(gunzip -c data/fbank/ljspeech_cuts_all.jsonl.gz | wc -l) - 600 )) lhotse subset --first $n \ data/fbank/ljspeech_cuts_all.jsonl.gz \ data/fbank/ljspeech_cuts_train.jsonl.gz touch data/fbank/.ljspeech_split.done fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compute fbank mean and std (used by ./matcha)" if [ ! -f ./data/fbank/cmvn.json ]; then ./local/compute_fbank_statistics.py ./data/fbank/ljspeech_cuts_train.jsonl.gz ./data/fbank/cmvn.json fi fi