#!/usr/bin/env python3 # Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, # Zengwei Yao,) # 2024 The Chinese Univ. of HK (authors: Zengrui Jin) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file computes fbank features of the VCTK dataset. It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/spectrogram. """ import argparse import logging import os from pathlib import Path from typing import Optional import torch from lhotse import CutSet, LilcomChunkyWriter, Spectrogram, SpectrogramConfig from lhotse.audio import RecordingSet from lhotse.recipes.utils import read_manifests_if_cached from lhotse.supervision import SupervisionSet from icefall.utils import get_executor # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--dataset", type=str, help="""Dataset parts to compute fbank. If None, we will use all""", ) parser.add_argument( "--sampling-rate", type=int, default=24000, help="""Sampling rate of the audio for computing fbank, the default value for LibriTTS is 24000, audio files will be resampled if a different sample rate is provided""", ) return parser.parse_args() def compute_spectrogram_libritts( dataset: Optional[str] = None, sampling_rate: int = 24000 ): src_dir = Path("data/manifests") output_dir = Path("data/spectrogram") num_jobs = min(32, os.cpu_count()) frame_length = 1024 / sampling_rate # (in second) frame_shift = 256 / sampling_rate # (in second) use_fft_mag = True prefix = "libritts" suffix = "jsonl.gz" if dataset is None: dataset_parts = ( "dev-clean", "dev-other", "test-clean", "test-other", "train-clean-100", "train-clean-360", "train-other-500", ) else: dataset_parts = dataset.split(" ", -1) manifests = read_manifests_if_cached( dataset_parts=dataset_parts, output_dir=src_dir, prefix=prefix, suffix=suffix, ) assert manifests is not None assert len(manifests) == len(dataset_parts), ( len(manifests), len(dataset_parts), list(manifests.keys()), dataset_parts, ) config = SpectrogramConfig( sampling_rate=sampling_rate, frame_length=frame_length, frame_shift=frame_shift, use_fft_mag=use_fft_mag, ) extractor = Spectrogram(config) with get_executor() as ex: # Initialize the executor only once. for partition, m in manifests.items(): cuts_filename = f"{prefix}_cuts_{partition}.{suffix}" if (output_dir / cuts_filename).is_file(): logging.info(f"{partition} already exists - skipping.") return logging.info(f"Processing {partition}") cut_set = CutSet.from_manifests( recordings=m["recordings"], supervisions=m["supervisions"], ) if sampling_rate != 24000: logging.info(f"Resampling audio to {sampling_rate}") cut_set = cut_set.resample(sampling_rate) cut_set = cut_set.compute_and_store_features( extractor=extractor, storage_path=f"{output_dir}/{prefix}_feats_{partition}", # when an executor is specified, make more partitions num_jobs=num_jobs if ex is None else 80, executor=ex, storage_type=LilcomChunkyWriter, ) cut_set.to_file(output_dir / cuts_filename) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) compute_spectrogram_libritts()