# Copyright 2024 Xiaomi Corporation (authors: Yifan Yang) # Copyright 2024 Shanghai Jiao Tong University (authors: Jianheng Zhuo) # # See ../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from typing import Any, Dict, Optional import numpy as np import torch import torch.nn.functional as F from lhotse import validate from lhotse.cut import CutSet from lhotse.dataset.collation import read_audio_from_cuts from torch.utils.data.dataloader import default_collate class HubertDataset(torch.utils.data.Dataset): """ In this implementation, there will always be a single channel. Returns: .. code-block:: { 'audio': (B x NumSamples) float tensor } """ def __init__( self, max_sample_size: Optional[int] = None, sample_rate: float = 16000, label_rate: float = 50, random_crop: bool = True, pad_audio: bool = False, num_classes: list = [504], do_normalize: bool = True, ) -> None: super().__init__() self.sample_rate = sample_rate self.label_rate = label_rate self.random_crop = random_crop self.pad_audio = pad_audio self.num_classes = num_classes self.normalize = do_normalize self.max_sample_size = ( max_sample_size if max_sample_size is not None else sys.maxsize ) def __getitem__(self, cuts: CutSet) -> Dict[str, Any]: self._validate(cuts) audio, _ = read_audio_from_cuts(cuts) for i, item in enumerate(audio): audio[i] = self.postprocess(item, self.sample_rate) audio_lens = [cut.num_samples for cut in cuts] if self.pad_audio: audio_size = min(max(audio_lens), self.max_sample_size) else: audio_size = min(min(audio_lens), self.max_sample_size) audio, padding_mask, audio_starts = self.collater_audio( audio, audio_lens, audio_size ) kmeans = [cut.custom["kmeans"] for cut in cuts] kmeans = [ torch.tensor([int(item) for item in label.split()], dtype=torch.int64) for label in kmeans ] kmeans, _ = self.collater_frm_label(kmeans, audio_size, audio_starts) return { "cuts": cuts, "audio": audio, "padding_mask": padding_mask, "kmeans": kmeans, } def postprocess(self, wav, cur_sample_rate): if wav.dim() == 2: wav = wav.mean(-1) assert wav.dim() == 1, wav.dim() if cur_sample_rate != self.sample_rate: raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}") if self.normalize: with torch.no_grad(): wav = F.layer_norm(wav, wav.shape) return wav def _validate(self, cuts: CutSet) -> None: validate(cuts) assert all(cut.has_recording for cut in cuts) def crop_to_max_size(self, wav, target_size): size = len(wav) diff = size - target_size if diff <= 0: return wav, 0 start, end = 0, target_size if self.random_crop: start = np.random.randint(0, diff + 1) end = size - diff + start return wav[start:end], start def collater_audio(self, audios, audio_lens, audio_size): collated_audios = audios[0].new_zeros(len(audios), audio_size) padding_mask = ( torch.BoolTensor(collated_audios.shape).fill_(False) # if self.pad_audio else None ) audio_starts = [0 for _ in audios] for i, (audio, audio_len) in enumerate(zip(audios, audio_lens)): audio = audio[:audio_len] diff = audio_len - audio_size if diff == 0: collated_audios[i] = audio elif diff < 0: assert self.pad_audio collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)]) padding_mask[i, diff:] = True else: collated_audios[i], audio_starts[i] = self.crop_to_max_size( audio, audio_size ) return collated_audios, padding_mask, audio_starts def collate_tokens( self, values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False, pad_to_length=None, pad_to_multiple=1, pad_to_bsz=None, ): """Convert a list of 1d tensors into a padded 2d tensor.""" size = max(v.size(0) for v in values) size = size if pad_to_length is None else max(size, pad_to_length) if pad_to_multiple != 1 and size % pad_to_multiple != 0: size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) batch_size = len(values) if pad_to_bsz is None else max(len(values), pad_to_bsz) res = values[0].new(batch_size, size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if move_eos_to_beginning: if eos_idx is None: # if no eos_idx is specified, then use the last token in src dst[0] = src[-1] else: dst[0] = eos_idx dst[1:] = src[:-1] else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)]) return res def collater_frm_label(self, targets, audio_size, audio_starts): label_rate = self.label_rate pad = self.num_classes[0] - 1 assert label_rate > 0 s2f = label_rate / self.sample_rate frm_starts = [int(round(s * s2f)) for s in audio_starts] frm_size = int(round(audio_size * s2f)) if not self.pad_audio: rem_size = [len(t) - s for t, s in zip(targets, frm_starts)] frm_size = min(frm_size, *rem_size) targets = [t[s : s + frm_size] for t, s in zip(targets, frm_starts)] lengths = torch.LongTensor([len(t) for t in targets]) targets = self.collate_tokens(targets, pad_idx=pad, left_pad=False) return targets, lengths class HubertAsrDataset(torch.utils.data.Dataset): """ In this implementation, there will always be a single channel. Returns: .. code-block:: { 'audio': (B x NumSamples) float tensor } """ def __init__( self, max_sample_size: Optional[int] = None, sample_rate: float = 16000, random_crop: bool = True, pad_audio: bool = True, do_normalize: bool = True, ) -> None: super().__init__() self.sample_rate = sample_rate self.random_crop = random_crop self.pad_audio = pad_audio self.normalize = do_normalize self.max_sample_size = ( max_sample_size if max_sample_size is not None else sys.maxsize ) def __getitem__(self, cuts: CutSet) -> Dict[str, Any]: self._validate(cuts) audio, _ = read_audio_from_cuts(cuts) for i, item in enumerate(audio): audio[i] = self.postprocess(item, self.sample_rate) audio_lens = [cut.num_samples for cut in cuts] if self.pad_audio: audio_size = min(max(audio_lens), self.max_sample_size) else: audio_size = min(min(audio_lens), self.max_sample_size) audio, padding_mask, audio_starts = self.collater_audio( audio, audio_lens, audio_size ) return { "cuts": cuts, "audio": audio, "padding_mask": padding_mask, "supervisions": default_collate( [ { "text": supervision.text, } for sequence_idx, cut in enumerate(cuts) for supervision in cut.supervisions ] ), } def postprocess(self, wav, cur_sample_rate): if wav.dim() == 2: wav = wav.mean(-1) assert wav.dim() == 1, wav.dim() if cur_sample_rate != self.sample_rate: raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}") if self.normalize: with torch.no_grad(): wav = F.layer_norm(wav, wav.shape) return wav def _validate(self, cuts: CutSet) -> None: validate(cuts) assert all(cut.has_recording for cut in cuts) def crop_to_max_size(self, wav, target_size): size = len(wav) diff = size - target_size if diff <= 0: return wav, 0 start, end = 0, target_size if self.random_crop: start = np.random.randint(0, diff + 1) end = size - diff + start return wav[start:end], start def collater_audio(self, audios, audio_lens, audio_size): collated_audios = audios[0].new_zeros(len(audios), audio_size) padding_mask = ( torch.BoolTensor(collated_audios.shape).fill_(False) # if self.pad_audio else None ) audio_starts = [0 for _ in audios] for i, (audio, audio_len) in enumerate(zip(audios, audio_lens)): audio = audio[:audio_len] diff = audio_len - audio_size if diff == 0: collated_audios[i] = audio elif diff < 0: assert self.pad_audio collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)]) padding_mask[i, diff:] = True else: collated_audios[i], audio_starts[i] = self.crop_to_max_size( audio, audio_size ) return collated_audios, padding_mask, audio_starts def collate_tokens( self, values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False, pad_to_length=None, pad_to_multiple=1, pad_to_bsz=None, ): """Convert a list of 1d tensors into a padded 2d tensor.""" size = max(v.size(0) for v in values) size = size if pad_to_length is None else max(size, pad_to_length) if pad_to_multiple != 1 and size % pad_to_multiple != 0: size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) batch_size = len(values) if pad_to_bsz is None else max(len(values), pad_to_bsz) res = values[0].new(batch_size, size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if move_eos_to_beginning: if eos_idx is None: # if no eos_idx is specified, then use the last token in src dst[0] = src[-1] else: dst[0] = eos_idx dst[1:] = src[:-1] else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)]) return res if __name__ == "__main__": from lhotse import load_manifest_lazy from lhotse.dataset import DynamicBucketingSampler from torch.utils.data import DataLoader dataset = HubertDataset() cuts = load_manifest_lazy("data/fbank2/librispeech_cuts_train-clean-100.jsonl.gz") sampler = DynamicBucketingSampler( cuts, max_duration=100, shuffle=False, ) dl = DataLoader( dataset, batch_size=None, sampler=sampler, num_workers=2, ) for batch_idx, batch in enumerate(dl): print(batch) break