#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail # This script generates Ngram LM / NNLM and related files needed by decoding. # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/lm # This directory contains the following files downloaded from # http://www.openslr.org/resources/11 # # - 3-gram.pruned.1e-7.arpa.gz # - 3-gram.pruned.1e-7.arpa # - 4-gram.arpa.gz # - 4-gram.arpa # - librispeech-vocab.txt # - librispeech-lexicon.txt # - librispeech-lm-norm.txt.gz # . prepare.sh --stage -1 --stop-stage 6 || exit 1 log "Running prepare_lm.sh" stage=0 stop_stage=100 . shared/parse_options.sh || exit 1 if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Prepare BPE based lexicon." for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/words.txt $lang_dir if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir log "Validating $lang_dir/lexicon.txt" ./local/validate_bpe_lexicon.py \ --lexicon $lang_dir/lexicon.txt \ --bpe-model $lang_dir/bpe.model fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi done fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare word level G" # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $dl_dir/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ $dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt fi for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} if [ ! -f $lang_dir/HL.fst ]; then ./local/prepare_lang_fst.py \ --lang-dir $lang_dir \ --ngram-G ./data/lm/G_3_gram.fst.txt fi done fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone # Note If ./local/compile_hlg.py throws OOM, # please switch to the following command # # ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir # Note If ./local/compile_hlg.py throws OOM, # please switch to the following command # # ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir done fi # Compile LG for RNN-T fast_beam_search decoding if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compile LG" ./local/compile_lg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_lg.py --lang-dir $lang_dir done fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Prepare token level ngram G" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} if [ ! -f $lang_dir/transcript_tokens.txt ]; then ./local/convert_transcript_words_to_tokens.py \ --lexicon $lang_dir/lexicon.txt \ --transcript $lang_dir/transcript_words.txt \ --oov "" \ > $lang_dir/transcript_tokens.txt fi for ngram in 2 3 4 5; do if [ ! -f $lang_dir/${ngram}gram.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order ${ngram} \ -text $lang_dir/transcript_tokens.txt \ -lm $lang_dir/${ngram}gram.arpa fi if [ ! -f $lang_dir/${ngram}gram.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_dir/tokens.txt" \ --disambig-symbol='#0' \ --max-order=${ngram} \ $lang_dir/${ngram}gram.arpa > $lang_dir/${ngram}gram.fst.txt fi done done fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Generate NNLM training data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" lang_dir=data/lang_bpe_${vocab_size} out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $dl_dir/lm/librispeech-lm-norm.txt \ --lm-archive $out_dir/lm_data.pt done fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Generate NNLM validation data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir if [ ! -f $out_dir/valid.txt ]; then files=$( find "$dl_dir/LibriSpeech/dev-clean" -name "*.trans.txt" find "$dl_dir/LibriSpeech/dev-other" -name "*.trans.txt" ) for f in ${files[@]}; do cat $f | cut -d " " -f 2- done > $out_dir/valid.txt fi lang_dir=data/lang_bpe_${vocab_size} ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $out_dir/valid.txt \ --lm-archive $out_dir/lm_data-valid.pt done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Generate NNLM test data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir if [ ! -f $out_dir/test.txt ]; then files=$( find "$dl_dir/LibriSpeech/test-clean" -name "*.trans.txt" find "$dl_dir/LibriSpeech/test-other" -name "*.trans.txt" ) for f in ${files[@]}; do cat $f | cut -d " " -f 2- done > $out_dir/test.txt fi lang_dir=data/lang_bpe_${vocab_size} ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $out_dir/test.txt \ --lm-archive $out_dir/lm_data-test.pt done fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Sort NNLM training data" # Sort LM training data by sentence length in descending order # for ease of training. # # Sentence length equals to the number of BPE tokens # in a sentence. for vocab_size in ${vocab_sizes[@]}; do out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data.pt \ --out-lm-data $out_dir/sorted_lm_data.pt \ --out-statistics $out_dir/statistics.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data-valid.pt \ --out-lm-data $out_dir/sorted_lm_data-valid.pt \ --out-statistics $out_dir/statistics-valid.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data-test.pt \ --out-lm-data $out_dir/sorted_lm_data-test.pt \ --out-statistics $out_dir/statistics-test.txt done fi