#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 # run step 0 to step 5 by default stage=0 stop_stage=5 # Note: This script just prepares the minimal requirements needed by a # transducer training with bpe units. # # If you want to use ngram or nnlm, please continue running prepare_lm.sh after # you succeed in running this script. # # This script also contains the steps to generate phone based units, but they # will not run automatically, you can generate the phone based units by # bash prepare.sh --stage -1 --stop-stage -1 # bash prepare.sh --stage 6 --stop-stage 6 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/LibriSpeech # You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it. # You can download them from https://www.openslr.org/12 # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech # # lm directory is not necessary for transducer training with bpe units, but it # is needed by phone based modeling, you can download it by running # bash prepare.sh --stage -1 --stop-stage -1 # then you can see the following files in the directory. # - $dl_dir/lm # This directory contains the following files downloaded from # http://www.openslr.org/resources/11 # # - 3-gram.pruned.1e-7.arpa.gz # - 3-gram.pruned.1e-7.arpa # - 4-gram.arpa.gz # - 4-gram.arpa # - librispeech-vocab.txt # - librispeech-lexicon.txt # - librispeech-lm-norm.txt.gz dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( # 5000 # 2000 # 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "Running prepare.sh" log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: Download LM" mkdir -p $dl_dir/lm if [ ! -e $dl_dir/lm/.done ]; then ./local/download_lm.py --out-dir=$dl_dir/lm touch $dl_dir/lm/.done fi fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/LibriSpeech, # you can create a symlink # # ln -sfv /path/to/LibriSpeech $dl_dir/LibriSpeech # if [ ! -d $dl_dir/LibriSpeech/train-other-500 ]; then lhotse download librispeech --full $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare LibriSpeech manifest" # We assume that you have downloaded the LibriSpeech corpus # to $dl_dir/LibriSpeech mkdir -p data/manifests if [ ! -e data/manifests/.librispeech.done ]; then lhotse prepare librispeech -j $nj $dl_dir/LibriSpeech data/manifests touch data/manifests/.librispeech.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to $dl_dir/musan mkdir -p data/manifests if [ ! -e data/manifests/.musan.done ]; then lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for librispeech" mkdir -p data/fbank if [ ! -e data/fbank/.librispeech.done ]; then ./local/compute_fbank_librispeech.py touch data/fbank/.librispeech.done fi if [ ! -f data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz ]; then cat <(gunzip -c data/fbank/librispeech_cuts_train-clean-100.jsonl.gz) \ <(gunzip -c data/fbank/librispeech_cuts_train-clean-360.jsonl.gz) \ <(gunzip -c data/fbank/librispeech_cuts_train-other-500.jsonl.gz) | \ shuf | gzip -c > data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz fi if [ ! -e data/fbank/.librispeech-validated.done ]; then log "Validating data/fbank for LibriSpeech" parts=( train-clean-100 train-clean-360 train-other-500 test-clean test-other dev-clean dev-other ) for part in ${parts[@]}; do python3 ./local/validate_manifest.py \ data/fbank/librispeech_cuts_${part}.jsonl.gz done touch data/fbank/.librispeech-validated.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" mkdir -p data/fbank if [ ! -e data/fbank/.musan.done ]; then ./local/compute_fbank_musan.py touch data/fbank/.musan.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" files=$( find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt" find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt" find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt" ) for f in ${files[@]}; do cat $f | cut -d " " -f 2- done > $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi done fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir if [ ! -f $dl_dir/lm/librispeech-lexicon.txt ]; then log "No lexicon file in $dl_dir/lm, please run :" log "prepare.sh --stage -1 --stop-stage -1" exit -1 fi if [ ! -f $lang_dir/lexicon.txt ]; then (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/librispeech-lexicon.txt | sort | uniq > $lang_dir/lexicon.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi fi