# Results for train-clean-100 This page shows the WERs for test-clean/test-other using only train-clean-100 subset as training data. ## Distillation with hubert ### 2022-05-27 Related models/log/tensorboard: https://huggingface.co/GuoLiyong/stateless6_baseline_vs_disstillation Following results are obtained by ./distillation_with_hubert.sh The only differences is in pruned_transducer_stateless6/train.py. For baseline: set enable_distillation=False For distillation: set enable_distillation=True (the default) Decoding method is modified beam search. | | test-clean | test-other | comment | |-------------------------------------|------------|------------|------------------------------------------| | baseline no vq distillation | 7.09 | 18.88 | --epoch 20, --avg 10, --max-duration 200 | | baseline no vq distillation | 6.83 | 18.19 | --epoch 30, --avg 10, --max-duration 200 | | baseline no vq distillation | 6.73 | 17.79 | --epoch 40, --avg 10, --max-duration 200 | | baseline no vq distillation | 6.75 | 17.68 | --epoch 50, --avg 10, --max-duration 200 | | distillation with hubert | 5.82 | 15.98 | --epoch 20, --avg 10, --max-duration 200 | | distillation with hubert | 5.52 | 15.15 | --epoch 30, --avg 10, --max-duration 200 | | distillation with hubert | 5.45 | 14.94 | --epoch 40, --avg 10, --max-duration 200 | | distillation with hubert | 5.50 | 14.77 | --epoch 50, --avg 10, --max-duration 200 | ## Conformer encoder + embedding decoder ### 2022-02-21 Using commit `2332ba312d7ce72f08c7bac1e3312f7e3dd722dc`. | | test-clean | test-other | comment | |-------------------------------------|------------|------------|------------------------------------------| | greedy search (max sym per frame 1) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 | | greedy search (max sym per frame 2) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 | | greedy search (max sym per frame 3) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 | | modified beam search (beam size 4) | 6.31 | 16.3 | --epoch 57, --avg 17, --max-duration 100 | The training command for reproducing is given below: ```bash cd egs/librispeech/ASR/ ./prepare.sh ./prepare_giga_speech.sh export CUDA_VISIBLE_DEVICES="0,1" ./transducer_stateless_multi_datasets/train.py \ --world-size 2 \ --num-epochs 60 \ --start-epoch 0 \ --exp-dir transducer_stateless_multi_datasets/exp-100-2 \ --full-libri 0 \ --max-duration 300 \ --lr-factor 1 \ --bpe-model data/lang_bpe_500/bpe.model \ --modified-transducer-prob 0.25 --giga-prob 0.2 ``` The decoding command is given below: ```bash for epoch in 57; do for avg in 17; do for sym in 1 2 3; do ./transducer_stateless_multi_datasets/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer_stateless_multi_datasets/exp-100-2 \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 \ --context-size 2 \ --max-sym-per-frame $sym done done done epoch=57 avg=17 ./transducer_stateless_multi_datasets/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer_stateless_multi_datasets/exp-100-2 \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 \ --context-size 2 \ --decoding-method modified_beam_search \ --beam-size 4 ``` The tensorboard log is available at A pre-trained model and decoding logs can be found at