#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=-1 stop_stage=100 export CUDA_VISIBLE_DEVICES="" # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/librilight # You can find small, medium, large, etc. inside it. # # - $dl_dir/libriheavy # You can find libriheavy_cuts_small.jsonl.gz, libriheavy_cuts_medium.jsonl.gz, etc. inside it. # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download # If you want to do PromptASR experiments, please set it to True # as this will keep the texts and pre_text information required for # the training of PromptASR. keep_custom_fields=False . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( # 5000 # 2000 # 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data fbank_dir=data/fbank manifests_dir=data/manifests log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: Download audio data." # If you have pre-downloaded it to /path/to/librilight, # you can create a symlink # # ln -sfv /path/to/librilight $dl_dir/librilight # mkdir -p $dl_dir/librilight for subset in small medium large; do log "Downloading ${subset} subset." if [ ! -d $dl_dir/librilight/${subset} ]; then wget -P $dl_dir/librilight -c https://dl.fbaipublicfiles.com/librilight/data/${subset}.tar tar xf $dl_dir/librilight/${subset}.tar -C $dl_dir/librilight else log "Skipping download, ${subset} subset exists." fi done fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download manifests from huggingface." # If you have pre-downloaded it to /path/to/libriheavy, # you can create a symlink # # ln -sfv /path/to/libriheavy $dl_dir/libriheavy # mkdir -p $dl_dir/libriheavy for subset in small medium large dev test_clean test_other; do if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz ]; then log "Downloading ${subset} subset." wget -P $dl_dir/libriheavy -c https://huggingface.co/datasets/pkufool/libriheavy/resolve/main/libriheavy_cuts_${subset}.jsonl.gz else log "Skipping download, ${subset} subset exists." fi done # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Download manifests from modelscope" mkdir -p $dl_dir/libriheavy if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_small.jsonl.gz ]; then cd $dl_dir/libriheavy GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/datasets/pkufool/Libriheavy.git cd Libriheavy git lfs pull --exclude "raw/*" mv *.jsonl.gz ../ cd .. rm -rf Libriheavy cd ../../ fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to $dl_dir/musan mkdir -p $manifests_dir if [ ! -e $manifests_dir/.musan.done ]; then lhotse prepare musan $dl_dir/musan $manifests_dir touch $manifests_dir/.musan.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare Libriheavy manifests" mkdir -p $manifests_dir for subset in small medium large dev test_clean test_other; do if [ ! -e $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then log "Prepare manifest for subset : ${subset}" ./local/prepare_manifest.py $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz $manifests_dir $keep_custom_fields fi done fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" mkdir -p $fbank_dir if [ ! -e $fbank_dir/.musan.done ]; then ./local/compute_fbank_musan.py touch $fbank_dir/.musan.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Compute fbank for small subset and validation subsets" for subset in test_clean test_other dev small; do log "Computing $subset subset." if [ ! -e $fbank_dir/.libriheavy.${subset}.done ]; then ./local/compute_fbank_libriheavy.py \ --manifest-dir ${manifests_dir} \ --subset ${subset} \ --fbank-dir $fbank_dir \ --num-workers $nj fi done fi num_per_split=8000 if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Split medium and large subsets." for subset in medium large; do log "Spliting subset : $subset" split_dir=$manifests_dir/libriheavy_${subset}_split mkdir -p $split_dir if [ ! -e $split_dir/.split_completed ]; then lhotse split-lazy $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz $split_dir $num_per_split touch $split_dir/.split_completed fi done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Compute fbank for medium and large subsets" mkdir -p $fbank_dir chunk_size=20 for subset in medium large; do if [ $subset == "large" ]; then chunk_size=200 fi num_splits=$(find $manifests_dir/libriheavy_${subset}_split -name "libriheavy_cuts_${subset}.*.jsonl.gz" | wc -l) if [ ! -e $fbank_dir/.libriheavy.${subset}.done ]; then for i in $(seq 0 1 6); do start=$(( i * $chunk_size )) end=$(( (i+1) * $chunk_size )) ./local/compute_fbank_libriheavy.py \ --manifest-dir ${manifests_dir} \ --use-splits 1 \ --subset ${subset} \ --fbank-dir $fbank_dir \ --num-splits $num_splits \ --num-workers $nj \ --start $start \ --stop $end & done wait touch $fbank_dir/.libriheavy.${subset}.done fi done fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Combine features for medium and large subsets." for subset in medium large; do log "Combining $subset subset." if [ ! -f $fbank_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then pieces=$(find $fbank_dir/libriheavy_${subset}_split -name "libriheavy_cuts_${subset}.*.jsonl.gz") lhotse combine $pieces $fbank_dir/libriheavy_cuts_${subset}.jsonl.gz fi done fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Train BPE model for normalized text" if [ ! -f data/texts ]; then gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \ | jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \ | ./local/norm_text.py > data/texts fi for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir cp data/texts $lang_dir/text if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/text fi done fi if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Train BPE model for unnormalized text" if [ ! -f data/punc_texts ]; then gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \ | jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' > data/punc_texts fi for vocab_size in ${vocab_sizes[@]}; do new_vocab_size=$(($vocab_size + 256)) lang_dir=data/lang_punc_bpe_${new_vocab_size} mkdir -p $lang_dir cp data/punc_texts $lang_dir/text if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --byte-fallback \ --vocab-size ${new_vocab_size} \ --byte-fallback \ --character-coverage 0.99 \ --transcript $lang_dir/text fi done fi if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then log "Stage 11: Prepare language model for normalized text" for subset in small medium large; do if [ ! -f $manifests_dir/texts_${subset} ]; then gunzip -c $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz \ | jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \ | ./local/norm_text.py > $manifests_dir/texts_${subset} fi done mkdir -p data/lm if [ ! -f data/lm/text ]; then cat $manifests_dir/texts_small $manifests_dir/texts_medium $manifests_dir/texts_large > data/lm/text fi (echo ' 0'; echo '!SIL 1'; echo ' 2'; echo ' 3';) \ > data/lm/words.txt cat data/lm/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \ | awk '{print $1" "NR+3}' >> data/lm/words.txt num_lines=$(< data/lm/words.txt wc -l) (echo "#0 $num_lines"; echo " $(($num_lines + 1))"; echo " $(($num_lines + 2))";) \ >> data/lm/words.txt # Train LM on transcripts if [ ! -f data/lm/3-gram.unpruned.arpa ]; then python3 ./shared/make_kn_lm.py \ -ngram-order 3 \ -text data/lm/text \ -lm data/lm/3-gram.unpruned.arpa fi # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table=data/lm/words.txt \ --disambig-symbol='#0' \ --max-order=3 \ data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt fi fi