#!/usr/bin/env bash set -eou pipefail stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/librispeech # You can find audio and transcripts for LibriSpeech in this path. # # - $dl_dir/libricss # You can find audio and transcripts for LibriCSS in this path. # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech # # - $dl_dir/rirs_noises # This directory contains the RIRS_NOISES corpus downloaded from https://openslr.org/28/. # dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data vocab_size=500 log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/librispeech, # you can create a symlink # # ln -sfv /path/to/librispeech $dl_dir/librispeech # if [ ! -d $dl_dir/librispeech ]; then lhotse download librispeech $dl_dir/librispeech fi # If you have pre-downloaded it to /path/to/libricss, # you can create a symlink # # ln -sfv /path/to/libricss $dl_dir/libricss # if [ ! -d $dl_dir/libricss ]; then lhotse download libricss $dl_dir/libricss fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi # If you have pre-downloaded it to /path/to/rirs_noises, # you can create a symlink # # ln -sfv /path/to/rirs_noises $dl_dir/ # if [ ! -d $dl_dir/rirs_noises ]; then lhotse download rir-noise $dl_dir/rirs_noises fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare LibriSpeech manifests" # We assume that you have downloaded the LibriSpeech corpus # to $dl_dir/librispeech. We perform text normalization for the transcripts. # NOTE: Alignments are required for this recipe. mkdir -p data/manifests log "This recipe uses mfa alignment for trimming" if [ ! -d $dl_dir/libri_alignments/LibriSpeech ]; then log "No alignment provided. please refer to ../../librispeech/ASR/add_alignments.sh \n \ for mfa alignments. Once you have downloaded and unzipped the .zip file containing \n \ all alignments, the folder should be renamed to libri_alignments and moved to your $dl_dir ." exit 0 fi lhotse prepare librispeech -p train-clean-100 -p train-clean-360 -p train-other-500 -p dev-clean \ -j 4 --alignments-dir $dl_dir/libri_alignments/LibriSpeech $dl_dir/librispeech data/manifests/ fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare LibriCSS manifests" # We assume that you have downloaded the LibriCSS corpus # to $dl_dir/libricss. We perform text normalization for the transcripts. mkdir -p data/manifests for mic in sdm ihm-mix; do lhotse prepare libricss --type $mic --segmented $dl_dir/libricss data/manifests/ done fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare musan manifest and RIRs" # We assume that you have downloaded the musan corpus # to $dl_dir/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests # We assume that you have downloaded the RIRS_NOISES corpus # to $dl_dir/rirs_noises lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises/RIRS_NOISES data/manifests fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Extract features for LibriSpeech, trim to alignments, and shuffle the cuts" # python local/compute_fbank_librispeech.py lhotse combine data/manifests/librispeech_cuts_train* data/manifests/librispeech_cuts_train_all.jsonl.gz lhotse cut trim-to-alignments --type word --max-pause 0.2 \ data/manifests/librispeech_cuts_train_all.jsonl.gz \ data/manifests/librispeech_cuts_train_all_trimmed.jsonl.gz cat <(gunzip -c data/manifests/librispeech_cuts_train_all_trimmed.jsonl.gz) | \ shuf | gzip -c > data/manifests/librispeech_cuts_train_trimmed.jsonl.gz fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Create simulated mixtures from LibriSpeech (train and dev). This may take a while." # We create a high overlap set which will be used during the model warmup phase, and a # full training set that will be used for the subsequent training. gunzip -c data/manifests/libricss-sdm_supervisions_all.jsonl.gz |\ grep -v "0L" | grep -v "OV10" |\ gzip -c > data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz gunzip -c data/manifests/libricss-sdm_supervisions_all.jsonl.gz |\ grep "OV40" |\ gzip -c > data/manifests/libricss-sdm_supervisions_ov40.jsonl.gz # Warmup mixtures (100k) based on high overlap (OV40) log "Generating 100k anechoic train mixtures for warmup" lhotse workflows simulate-meetings \ --method conversational \ --fit-to-supervisions data/manifests/libricss-sdm_supervisions_ov40.jsonl.gz \ --num-meetings 100000 \ --num-speakers-per-meeting 2,3 \ --max-duration-per-speaker 15.0 \ --max-utterances-per-speaker 3 \ --seed 1234 \ --num-jobs 4 \ data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \ data/manifests/lsmix_cuts_train_clean_ov40.jsonl.gz # Full training set (2,3 speakers) anechoic log "Generating anechoic set (full)" lhotse workflows simulate-meetings \ --method conversational \ --fit-to-supervisions data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz \ --num-repeats 1 \ --num-speakers-per-meeting 2,3 \ --max-duration-per-speaker 15.0 \ --max-utterances-per-speaker 3 \ --seed 1234 \ --num-jobs 4 \ data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \ data/manifests/lsmix_cuts_train_clean_full.jsonl.gz fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Compute fbank features for musan" mkdir -p data/fbank python local/compute_fbank_musan.py fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Compute fbank features for simulated Libri-mix" mkdir -p data/fbank python local/compute_fbank_lsmix.py fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Add source feats to mixtures (useful for auxiliary tasks)" python local/add_source_feats.py log "Combining lsmix-clean and lsmix-rvb" for type in full ov40; do cat <(gunzip -c data/manifests/cuts_train_clean_${type}_sources.jsonl.gz) \ <(gunzip -c data/manifests/cuts_train_rvb_${type}_sources.jsonl.gz) |\ shuf | gzip -c > data/manifests/cuts_train_comb_${type}_sources.jsonl.gz done fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compute fbank features for LibriCSS" mkdir -p data/fbank python local/compute_fbank_libricss.py fi if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Download LibriSpeech BPE model from HuggingFace." mkdir -p data/lang_bpe_500 pushd data/lang_bpe_500 wget https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/resolve/main/data/lang_bpe_500/bpe.model popd fi