#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=-1 stop_stage=11 perturb_speed=true # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/aishell # You can find data_aishell, resource_aishell inside it. # You can download them from https://www.openslr.org/33 # # - $dl_dir/lm # This directory contains the language model downloaded from # https://huggingface.co/pkufool/aishell_lm # # - 3-gram.unpruned.arpa # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bbpe_xxx, # data/lang_bbpe_yyy if the array contains xxx, yyy vocab_sizes=( # 2000 # 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "stage 0: Download data" # If you have pre-downloaded it to /path/to/aishell, # you can create a symlink # # ln -sfv /path/to/aishell $dl_dir/aishell # # The directory structure is # aishell/ # |-- data_aishell # | |-- transcript # | `-- wav # `-- resource_aishell # |-- lexicon.txt # `-- speaker.info if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then lhotse download aishell $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/musan # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare aishell manifest" # We assume that you have downloaded the aishell corpus # to $dl_dir/aishell if [ ! -f data/manifests/.aishell_manifests.done ]; then mkdir -p data/manifests lhotse prepare aishell $dl_dir/aishell data/manifests touch data/manifests/.aishell_manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then log "It may take 6 minutes" mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for aishell" if [ ! -f data/fbank/.aishell.done ]; then mkdir -p data/fbank ./local/compute_fbank_aishell.py --perturb-speed ${perturb_speed} touch data/fbank/.aishell.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi lang_phone_dir=data/lang_phone if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" mkdir -p $lang_phone_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/aishell/resource_aishell/lexicon.txt | sort | uniq > $lang_phone_dir/lexicon.txt ./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir if [ ! -f $lang_phone_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_phone_dir fi # Train a bigram P for MMI training if [ ! -f $lang_phone_dir/transcript_words.txt ]; then log "Generate data to train phone based bigram P" aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt aishell_train_uid=$dl_dir/aishell/data_aishell/transcript/aishell_train_uid find $dl_dir/aishell/data_aishell/wav/train -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_train_uid awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_train_uid $aishell_text | cut -d " " -f 2- > $lang_phone_dir/transcript_words.txt fi if [ ! -f $lang_phone_dir/transcript_tokens.txt ]; then ./local/convert_transcript_words_to_tokens.py \ --lexicon $lang_phone_dir/uniq_lexicon.txt \ --transcript $lang_phone_dir/transcript_words.txt \ --oov "" \ > $lang_phone_dir/transcript_tokens.txt fi if [ ! -f $lang_phone_dir/P.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 2 \ -text $lang_phone_dir/transcript_tokens.txt \ -lm $lang_phone_dir/P.arpa fi if [ ! -f $lang_phone_dir/P.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_phone_dir/tokens.txt" \ --disambig-symbol='#0' \ --max-order=2 \ $lang_phone_dir/P.arpa > $lang_phone_dir/P.fst.txt fi fi lang_char_dir=data/lang_char if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare char based lang" mkdir -p $lang_char_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. # The transcripts in training set, generated in stage 5 cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt | cut -d " " -f 2- > $lang_char_dir/text (echo ' 0'; echo '!SIL 1'; echo ' 2'; echo ' 3';) \ > $lang_char_dir/words.txt cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \ | awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt num_lines=$(< $lang_char_dir/words.txt wc -l) (echo "#0 $num_lines"; echo " $(($num_lines + 1))"; echo " $(($num_lines + 2))";) \ >> $lang_char_dir/words.txt if [ ! -f $lang_char_dir/L_disambig.pt ]; then ./local/prepare_char.py --lang-dir $lang_char_dir fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare Byte BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bbpe_${vocab_size} mkdir -p $lang_dir cp $lang_char_dir/words.txt $lang_dir cp $lang_char_dir/text $lang_dir if [ ! -f $lang_dir/bbpe.model ]; then ./local/train_bbpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/text fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bbpe.py --lang-dir $lang_dir fi done fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare G" mkdir -p data/lm # Train LM on transcripts if [ ! -f data/lm/3-gram.unpruned.arpa ]; then python3 ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lang_char_dir/transcript_words.txt \ -lm data/lm/3-gram.unpruned.arpa fi # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="$lang_phone_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_phone.fst.txt python3 -m kaldilm \ --read-symbol-table="$lang_char_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt fi if [ ! -f $lang_char_dir/HLG.fst ]; then ./local/prepare_lang_fst.py \ --lang-dir $lang_char_dir \ --ngram-G ./data/lm/G_3_gram_char.fst.txt fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile LG & HLG" ./local/compile_hlg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone ./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bbpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir --lm G_3_gram_char done ./local/compile_lg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone ./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bbpe_${vocab_size} ./local/compile_lg.py --lang-dir $lang_dir --lm G_3_gram_char done fi if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Generate LM training data" log "Processing char based data" out_dir=data/lm_training_char mkdir -p $out_dir $dl_dir/lm if [ ! -f $dl_dir/lm/aishell-train-word.txt ]; then cp $lang_phone_dir/transcript_words.txt $dl_dir/lm/aishell-train-word.txt fi # training words ./local/prepare_char_lm_training_data.py \ --lang-char data/lang_char \ --lm-data $dl_dir/lm/aishell-train-word.txt \ --lm-archive $out_dir/lm_data.pt # valid words if [ ! -f $dl_dir/lm/aishell-valid-word.txt ]; then aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt aishell_valid_uid=$dl_dir/aishell/data_aishell/transcript/aishell_valid_uid find $dl_dir/aishell/data_aishell/wav/dev -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_valid_uid awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_valid_uid $aishell_text | cut -d " " -f 2- > $dl_dir/lm/aishell-valid-word.txt fi ./local/prepare_char_lm_training_data.py \ --lang-char data/lang_char \ --lm-data $dl_dir/lm/aishell-valid-word.txt \ --lm-archive $out_dir/lm_data_valid.pt # test words if [ ! -f $dl_dir/lm/aishell-test-word.txt ]; then aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt aishell_test_uid=$dl_dir/aishell/data_aishell/transcript/aishell_test_uid find $dl_dir/aishell/data_aishell/wav/test -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_test_uid awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_test_uid $aishell_text | cut -d " " -f 2- > $dl_dir/lm/aishell-test-word.txt fi ./local/prepare_char_lm_training_data.py \ --lang-char data/lang_char \ --lm-data $dl_dir/lm/aishell-test-word.txt \ --lm-archive $out_dir/lm_data_test.pt fi if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then log "Stage 11: Sort LM training data" # Sort LM training data by sentence length in descending order # for ease of training. # # Sentence length equals to the number of tokens # in a sentence. out_dir=data/lm_training_char mkdir -p $out_dir ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/ ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data.pt \ --out-lm-data $out_dir/sorted_lm_data.pt \ --out-statistics $out_dir/statistics.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data_valid.pt \ --out-lm-data $out_dir/sorted_lm_data-valid.pt \ --out-statistics $out_dir/statistics-valid.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data_test.pt \ --out-lm-data $out_dir/sorted_lm_data-test.pt \ --out-statistics $out_dir/statistics-test.txt fi if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then log "Stage 12: Train RNN LM model" python ../../../icefall/rnn_lm/train.py \ --start-epoch 0 \ --world-size 1 \ --num-epochs 20 \ --use-fp16 0 \ --embedding-dim 512 \ --hidden-dim 512 \ --num-layers 2 \ --batch-size 400 \ --exp-dir rnnlm_char/exp \ --lm-data $out_dir/sorted_lm_data.pt \ --lm-data-valid $out_dir/sorted_lm_data-valid.pt \ --vocab-size 4336 \ --master-port 12345 fi # whisper large-v3 using 128 mel bins, others using 80 mel bins whisper_mel_bins=80 output_dir=data/fbank_whisper if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then log "Stage 30: Compute ${whisper_mel_bins} dim fbank for whisper model fine-tuning" if [ ! -f $output_dir/.aishell.whisper.done ]; then mkdir -p $output_dir ./local/compute_fbank_aishell.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true --output-dir $output_dir ./local/compute_fbank_musan.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true --output-dir $output_dir touch $output_dir/.aishell.whisper.done fi fi