#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=-1 stop_stage=100 perturb_speed=true # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/aidatatang_200zh # You can find "corpus" and "transcript" inside it. # You can download it at https://openslr.org/62/ # If you download the data by yourself, DON'T FORGET to extract the *.tar.gz files under corpus. dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" if [ ! -f $dl_dir/aidatatang_200zh/transcript/aidatatang_200_zh_transcript.txt ]; then lhotse download aidatatang-200zh $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare aidatatang_200zh manifest" # We assume that you have downloaded the aidatatang_200zh corpus # to $dl_dir/aidatatang_200zh if [ ! -f data/manifests/aidatatang_200zh/.manifests.done ]; then mkdir -p data/manifests/aidatatang_200zh lhotse prepare aidatatang-200zh $dl_dir data/manifests/aidatatang_200zh touch data/manifests/aidatatang_200zh/.manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.manifests.done ]; then log "It may take 6 minutes" mkdir -p data/manifests/ lhotse prepare musan $dl_dir/musan data/manifests/ touch data/manifests/.manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for aidatatang_200zh" if [ ! -f data/fbank/.aidatatang_200zh.done ]; then mkdir -p data/fbank ./local/compute_fbank_aidatatang_200zh.py --perturb-speed ${perturb_speed} touch data/fbank/.aidatatang_200zh.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare char based lang" lang_char_dir=data/lang_char mkdir -p $lang_char_dir # Prepare text. # Note: in Linux, you can install jq with the following command: # 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 # 2. chmod +x ./jq # 3. cp jq /usr/bin if [ ! -f $lang_char_dir/text ]; then gunzip -c data/manifests/aidatatang_200zh/aidatatang_supervisions_train.jsonl.gz \ |jq '.text' |sed -e 's/["text:\t ]*//g' | sed 's/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text fi # Prepare words.txt if [ ! -f $lang_char_dir/text_words ]; then gunzip -c data/manifests/aidatatang_200zh/aidatatang_supervisions_train.jsonl.gz \ | jq '.text' | sed -e 's/["text:\t]*//g' | sed 's/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text_words fi cat $lang_char_dir/text_words | sed 's/ /\n/g' | sort -u | sed '/^$/d' \ | uniq > $lang_char_dir/words_no_ids.txt if [ ! -f $lang_char_dir/words.txt ]; then ./local/prepare_words.py \ --input-file $lang_char_dir/words_no_ids.txt \ --output-file $lang_char_dir/words.txt fi if [ ! -f $lang_char_dir/L_disambig.pt ]; then ./local/prepare_char.py fi fi