# Results ## zipformer (zipformer + pruned stateless transducer) See for more details. [zipformer](./zipformer) ### Non-streaming #### normal-scaled model, number of model parameters: 65549011, i.e., 65.55 M You can find a pretrained model, training logs, decoding logs, and decoding results at: You can use to deploy it. | decoding method | test-clean | test-other | comment | |----------------------|------------|------------|--------------------| | greedy_search | 2.83 | 5.91 | --epoch 30 --avg 5 | | modified_beam_search | 2.80 | 5.87 | --epoch 30 --avg 5 | | fast_beam_search | 2.87 | 5.86 | --epoch 30 --avg 5 | | greedy_search | 2.76 | 5.68 | --epoch 40 --avg 16| | modified_beam_search | 2.74 | 5.66 | --epoch 40 --avg 16| | fast_beam_search | 2.75 | 5.67 | --epoch 40 --avg 16| | greedy_search | 2.74 | 5.67 | --epoch 50 --avg 30| | modified_beam_search | 2.73 | 5.58 | --epoch 50 --avg 30| | fast_beam_search | 2.78 | 5.61 | --epoch 50 --avg 30| The training command is: ```bash export CUDA_VISIBLE_DEVICES="0,1" ./zipformer/train.py \ --world-size 2 \ --num-epochs 50 \ --start-epoch 1 \ --use-fp16 1 \ --exp-dir zipformer/exp \ --causal 0 \ --full-libri 1 \ --max-duration 3600 ``` This was used on 2 Nvidia A800 GPUs, you'll need to adjust the `CUDA_VISIBLE_DEVICES`, `--world-size` and `--max-duration` according to your hardware. The decoding command is: ```bash export CUDA_VISIBLE_DEVICES="0" for m in greedy_search modified_beam_search fast_beam_search; do ./zipformer/decode.py \ --epoch 50 \ --avg 30 \ --use-averaged-model 1 \ --exp-dir ./zipformer/exp \ --max-duration 600 \ --decoding-method $m done ```