#!/usr/bin/env python3 # # Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, # Zengwei Yao, # Wei Kang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: ./zipformer/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./zipformer/exp \ --max-duration 600 \ --keywords-file keywords.txt \ --beam-size 4 """ import argparse import logging import math import os from collections import defaultdict from dataclasses import dataclass, field from pathlib import Path from typing import Dict, List, Optional, Set, Tuple import k2 import sentencepiece as spm import torch import torch.nn as nn from asr_datamodule import GigaSpeechAsrDataModule from beam_search import keywords_search from lhotse.cut import Cut from train import add_model_arguments, get_model, get_params from icefall import ContextGraph from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, make_pad_mask, setup_logger, store_transcripts, str2bool, write_error_stats, ) LOG_EPS = math.log(1e-10) @dataclass class KwMetric: TP: int = 0 # True positive FN: int = 0 # False negative FP: int = 0 # False positive TN: int = 0 # True negative FN_list: List[str] = field(default_factory=list) FP_list: List[str] = field(default_factory=list) TP_list: List[str] = field(default_factory=list) def __str__(self) -> str: return f"(TP:{self.TP}, FN:{self.FN}, FP:{self.FP}, TN:{self.TN})" def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=30, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=True, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--exp-dir", type=str, default="zipformer/exp", help="The experiment dir", ) parser.add_argument( "--bpe-model", type=str, default="data/lang_bpe_500/bpe.model", help="Path to the BPE model", ) parser.add_argument( "--beam", type=int, default=4, help="""An integer indicating how many candidates we will keep for each frame. Used only when --decoding-method is beam_search or modified_beam_search.""", ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", ) parser.add_argument( "--keywords-file", type=str, help="File contains keywords.", ) parser.add_argument( "--test-set", type=str, default="small", help="small or large", ) parser.add_argument( "--keywords-score", type=float, default=1.5, help=""" The default boosting score (token level) for keywords. it will boost the paths that match keywords to make them survive beam search. """, ) parser.add_argument( "--keywords-threshold", type=float, default=0.35, help="The default threshold (probability) to trigger the keyword.", ) parser.add_argument( "--num-tailing-blanks", type=int, default=1, help="The number of tailing blanks should have after hitting one keyword.", ) parser.add_argument( "--blank-penalty", type=float, default=0.0, help=""" The penalty applied on blank symbol during decoding. Note: It is a positive value that would be applied to logits like this `logits[:, 0] -= blank_penalty` (suppose logits.shape is [batch_size, vocab] and blank id is 0). """, ) add_model_arguments(parser) return parser def decode_one_batch( params: AttributeDict, model: nn.Module, sp: spm.SentencePieceProcessor, batch: dict, keywords_graph: Optional[ContextGraph] = None, ) -> List[List[Tuple[str, Tuple[int, int]]]]: """Decode one batch and return the result in a list. The length of the list equals to batch size, the i-th element contains the triggered keywords for the i-th utterance in the given batch. The triggered keywords are also a list, each of it contains a tuple of hitting keyword and the corresponding start timestamps and end timestamps of the hitting keyword. Args: params: It's the return value of :func:`get_params`. model: The neural model. sp: The BPE model. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. keywords_graph: The graph containing keywords. Returns: Return the decoding result. See above description for the format of the returned list. """ device = next(model.parameters()).device feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) # at entry, feature is (N, T, C) supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) if params.causal: # this seems to cause insertions at the end of the utterance if used with zipformer. pad_len = 30 feature_lens += pad_len feature = torch.nn.functional.pad( feature, pad=(0, 0, 0, pad_len), value=LOG_EPS, ) encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens) ans_dict = keywords_search( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, keywords_graph=keywords_graph, beam=params.beam, num_tailing_blanks=params.num_tailing_blanks, blank_penalty=params.blank_penalty, ) hyps = [] for ans in ans_dict: hyp = [] for hit in ans: hyp.append((hit.phrase, (hit.timestamps[0], hit.timestamps[-1]))) hyps.append(hyp) return hyps def decode_dataset( dl: torch.utils.data.DataLoader, params: AttributeDict, model: nn.Module, sp: spm.SentencePieceProcessor, keywords_graph: ContextGraph, keywords: Set[str], test_only_keywords: bool, ) -> Tuple[List[Tuple[str, List[str], List[str]]], KwMetric]: """Decode dataset. Args: dl: PyTorch's dataloader containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. sp: The BPE model. keywords_graph: The graph containing keywords. Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ num_cuts = 0 try: num_batches = len(dl) except TypeError: num_batches = "?" log_interval = 50 results = [] metric = {"all": KwMetric()} for k in keywords: metric[k] = KwMetric() for batch_idx, batch in enumerate(dl): texts = batch["supervisions"]["text"] cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] hyps = decode_one_batch( params=params, model=model, sp=sp, keywords_graph=keywords_graph, batch=batch, ) this_batch = [] assert len(hyps) == len(texts) for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): ref_text = ref_text.upper() ref_words = ref_text.split() hyp_words = [x[0] for x in hyp_words] # for computing WER this_batch.append((cut_id, ref_words, " ".join(hyp_words).split())) hyp_set = set(hyp_words) # each item is a keyword phrase if len(hyp_words) > 1: logging.warning( f"Cut {cut_id} triggers more than one keywords : {hyp_words}," f"please check the transcript to see if it really has more " f"than one keywords, if so consider splitting this audio and" f"keep only one keyword for each audio." ) hyp_str = " | ".join( hyp_words ) # The triggered keywords for this utterance. TP = False FP = False for x in hyp_set: assert x in keywords, x # can only trigger keywords if (test_only_keywords and x == ref_text) or ( not test_only_keywords and x in ref_text ): TP = True metric[x].TP += 1 metric[x].TP_list.append(f"({ref_text} -> {x})") if (test_only_keywords and x != ref_text) or ( not test_only_keywords and x not in ref_text ): FP = True metric[x].FP += 1 metric[x].FP_list.append(f"({ref_text} -> {x})") if TP: metric["all"].TP += 1 if FP: metric["all"].FP += 1 TN = True # all keywords are true negative then the summery is true negative. FN = False for x in keywords: if x not in ref_text and x not in hyp_set: metric[x].TN += 1 continue TN = False if (test_only_keywords and x == ref_text) or ( not test_only_keywords and x in ref_text ): fn = True for y in hyp_set: if (test_only_keywords and y == ref_text) or ( not test_only_keywords and y in ref_text ): fn = False break if fn: FN = True metric[x].FN += 1 metric[x].FN_list.append(f"({ref_text} -> {hyp_str})") if TN: metric["all"].TN += 1 if FN: metric["all"].FN += 1 results.extend(this_batch) num_cuts += len(texts) if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results, metric def save_results( params: AttributeDict, test_set_name: str, results: List[Tuple[str, List[str], List[str]]], metric: KwMetric, ): recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt" results = sorted(results) store_transcripts(filename=recog_path, texts=results) logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt" with open(errs_filename, "w") as f: wer = write_error_stats(f, f"{test_set_name}", results, enable_log=True) logging.info("Wrote detailed error stats to {}".format(errs_filename)) metric_filename = params.res_dir / f"metric-{test_set_name}-{params.suffix}.txt" with open(metric_filename, "w") as of: width = 10 for key, item in sorted( metric.items(), key=lambda x: (x[1].FP, x[1].FN), reverse=True ): acc = (item.TP + item.TN) / (item.TP + item.TN + item.FP + item.FN) precision = ( 0.0 if (item.TP + item.FP) == 0 else item.TP / (item.TP + item.FP) ) recall = 0.0 if (item.TP + item.FN) == 0 else item.TP / (item.TP + item.FN) fpr = 0.0 if (item.FP + item.TN) == 0 else item.FP / (item.FP + item.TN) s = f"{key}:\n" s += f"\t{'TP':{width}}{'FP':{width}}{'FN':{width}}{'TN':{width}}\n" s += f"\t{str(item.TP):{width}}{str(item.FP):{width}}{str(item.FN):{width}}{str(item.TN):{width}}\n" s += f"\tAccuracy: {acc:.3f}\n" s += f"\tPrecision: {precision:.3f}\n" s += f"\tRecall(PPR): {recall:.3f}\n" s += f"\tFPR: {fpr:.3f}\n" s += f"\tF1: {0.0 if precision * recall == 0 else 2 * precision * recall / (precision + recall):.3f}\n" if key != "all": s += f"\tTP list: {' # '.join(item.TP_list)}\n" s += f"\tFP list: {' # '.join(item.FP_list)}\n" s += f"\tFN list: {' # '.join(item.FN_list)}\n" of.write(s + "\n") if key == "all": logging.info(s) of.write(f"\n\n{params.keywords_config}") logging.info("Wrote metric stats to {}".format(metric_filename)) @torch.no_grad() def main(): parser = get_parser() GigaSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) params.res_dir = params.exp_dir / "kws" params.suffix = params.test_set if params.iter > 0: params.suffix += f"-iter-{params.iter}-avg-{params.avg}" else: params.suffix += f"-epoch-{params.epoch}-avg-{params.avg}" if params.causal: assert ( "," not in params.chunk_size ), "chunk_size should be one value in decoding." assert ( "," not in params.left_context_frames ), "left_context_frames should be one value in decoding." params.suffix += f"-chunk-{params.chunk_size}" params.suffix += f"-left-context-{params.left_context_frames}" params.suffix += f"-score-{params.keywords_score}" params.suffix += f"-threshold-{params.keywords_threshold}" params.suffix += f"-tailing-blanks-{params.num_tailing_blanks}" if params.blank_penalty != 0: params.suffix += f"-blank-penalty-{params.blank_penalty}" params.suffix += f"-keywords-{params.keywords_file.split('/')[-1]}" setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") logging.info("Decoding started") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"Device: {device}") sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) # and are defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.unk_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() logging.info(params) phrases = [] token_ids = [] keywords_scores = [] keywords_thresholds = [] keywords_config = [] with open(params.keywords_file, "r") as f: for line in f.readlines(): keywords_config.append(line) score = 0 threshold = 0 keyword = [] words = line.strip().upper().split() for word in words: word = word.strip() if word[0] == ":": score = float(word[1:]) continue if word[0] == "#": threshold = float(word[1:]) continue keyword.append(word) keyword = " ".join(keyword) phrases.append(keyword) token_ids.append(sp.encode(keyword)) keywords_scores.append(score) keywords_thresholds.append(threshold) params.keywords_config = "".join(keywords_config) keywords_graph = ContextGraph( context_score=params.keywords_score, ac_threshold=params.keywords_threshold ) keywords_graph.build( token_ids=token_ids, phrases=phrases, scores=keywords_scores, ac_thresholds=keywords_thresholds, ) keywords = set(phrases) logging.info("About to create model") model = get_model(params) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.to(device) model.eval() num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") # we need cut ids to display recognition results. args.return_cuts = True gigaspeech = GigaSpeechAsrDataModule(args) test_cuts = gigaspeech.test_cuts() test_dl = gigaspeech.test_dataloaders(test_cuts) if params.test_set == "small": test_fsc_small_cuts = gigaspeech.fsc_test_small_cuts() test_fsc_small_dl = gigaspeech.test_dataloaders(test_fsc_small_cuts) test_sets = ["small-fsc", "test"] test_dls = [test_fsc_small_dl, test_dl] else: assert params.test_set == "large", params.test_set test_fsc_large_cuts = gigaspeech.fsc_test_large_cuts() test_fsc_large_dl = gigaspeech.test_dataloaders(test_fsc_large_cuts) test_sets = ["large-fsc", "test"] test_dls = [test_fsc_large_dl, test_dl] for test_set, test_dl in zip(test_sets, test_dls): results, metric = decode_dataset( dl=test_dl, params=params, model=model, sp=sp, keywords_graph=keywords_graph, keywords=keywords, test_only_keywords="fsc" in test_set, ) save_results( params=params, test_set_name=test_set, results=results, metric=metric, ) logging.info("Done!") if __name__ == "__main__": main()