#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=8 stop_stage=8 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/icmcasr # You can find data_icmcasr, resource_icmcasr inside it. # You can download them from https://www.openslr.org/33 # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech # ln -s /your/parent/path/to/ICMC-ASR $PWD/downloa dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bbpe_xxx, # data/lang_bbpe_yyy if the array contains xxx, yyy vocab_sizes=( 2000 # 1000 # 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare icmcasr manifest" # We assume that you have downloaded the icmcasr corpus # to $dl_dir/icmcasr if [ ! -f data/manifests/.icmcasr_manifests.done ]; then mkdir -p data/manifests for part in ihm sdm mdm; do lhotse prepare icmcasr --mic ${part} $dl_dir/ICMC-ASR data/manifests done touch data/manifests/.icmcasr_manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Apply GSS enhancement on MDM data (this stage requires a GPU)" # We assume that you have installed the GSS package: https://github.com/desh2608/gss local/prepare_icmc_gss.sh --stage 1 --stop_stage 6 data/manifests exp/icmc_gss fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for icmcasr" if [ ! -f data/fbank/.icmcasr.done ]; then mkdir -p data/fbank ./local/compute_fbank_icmcasr.py --perturb-speed True echo "Combining manifests" lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\ gzip -c > data/manifests/cuts_train_all.jsonl.gz touch data/fbank/.icmcasr.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi lang_char_dir=data/lang_char if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare char based lang" mkdir -p $lang_char_dir if ! which jq; then echo "This script is intended to be used with jq but you have not installed jq Note: in Linux, you can install jq with the following command: 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 2. chmod +x ./jq 3. cp jq /usr/bin" && exit 1 fi if [ ! -f $lang_char_dir/text ] || [ ! -s $lang_char_dir/text ]; then log "Prepare text." gunzip -c data/manifests/icmcasr-ihm_supervisions_train.jsonl.gz \ | jq '.text' | sed 's/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text fi # The implementation of chinese word segmentation for text, # and it will take about 15 minutes. if [ ! -f $lang_char_dir/text_words_segmentation ]; then python3 ./local/text2segments.py \ --num-process $nj \ --input-file $lang_char_dir/text \ --output-file $lang_char_dir/text_words_segmentation fi if [ -f $lang_char_dir/words.txt ]; then cd $lang_char_dir ln -s ../../../../wenetspeech/ASR/data/lang_char/words.txt . cd .. else log "Abort! Please run ../../wenetspeech/ASR/prepare.sh" exit 1 fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare G" if [ ! -f $lang_char_dir/3-gram.unpruned.arpa ]; then python3 ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lang_char_dir/text_words_segmentation \ -lm $lang_char_dir/3-gram.unpruned.arpa fi mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building LG python3 -m kaldilm \ --read-symbol-table="$lang_char_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f $lang_char_dir/5-gram.unpruned.arpa ]; then python3 ./shared/make_kn_lm.py \ -ngram-order 5 \ -text $lang_char_dir/text_words_segmentation \ -lm $lang_char_dir/5-gram.unpruned.arpa fi if [ ! -f data/lm/G_5_gram.fst.txt ]; then # It is used in building LG python3 -m kaldilm \ --read-symbol-table="$lang_char_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=5 \ $lang_char_dir/5-gram.unpruned.arpa > data/lm/G_5_gram.fst.txt fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 15: Compile LG" if [ ! -d data/lang_bpe_2000/ ]; then log "Abort! Please run ../../multi_zh-hans/ASR/prepare.sh" exit 1 cd data ln -s ../../../../multi_zh-hans/ASR/data/lang_bpe_2000 . cd .. else log "data/lang_bpe_2000/ exists" fi lang_dir=data/lang_bpe_2000 python3 ./local/compile_lg.py --lang-dir $lang_dir #python3 ./local/compile_lg.py --lang-dir $lang_dir --lm G_5_gram fi