#!/usr/bin/env python3 # Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import math import warnings from typing import List, Optional, Tuple import torch from encoder_interface import EncoderInterface from scaling import ( ActivationBalancer, BasicNorm, DoubleSwish, ScaledConv1d, ScaledConv2d, ScaledLinear, ) from torch import Tensor, nn from icefall.utils import make_pad_mask class Conformer(EncoderInterface): """ Args: num_features (int): Number of input features subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers) d_model (int): attention dimension, also the output dimension nhead (int): number of head dim_feedforward (int): feedforward dimention num_encoder_layers (int): number of encoder layers dropout (float): dropout rate layer_dropout (float): layer-dropout rate. cnn_module_kernel (int): Kernel size of convolution module vgg_frontend (bool): whether to use vgg frontend. """ def __init__( self, num_features: int, subsampling_factor: int = 4, d_model: int = 256, nhead: int = 4, dim_feedforward: int = 2048, num_encoder_layers: int = 12, dropout: float = 0.1, layer_dropout: float = 0.075, cnn_module_kernel: int = 31, aux_layer_period: int = 3, ) -> None: super(Conformer, self).__init__() self.num_features = num_features self.subsampling_factor = subsampling_factor if subsampling_factor != 4: raise NotImplementedError("Support only 'subsampling_factor=4'.") # self.encoder_embed converts the input of shape (N, T, num_features) # to the shape (N, T//subsampling_factor, d_model). # That is, it does two things simultaneously: # (1) subsampling: T -> T//subsampling_factor # (2) embedding: num_features -> d_model self.encoder_embed = Conv2dSubsampling(num_features, d_model) self.encoder_pos = RelPositionalEncoding(d_model, dropout) encoder_layer = ConformerEncoderLayer( d_model, nhead, dim_feedforward, dropout, layer_dropout, cnn_module_kernel, ) # aux_layers from 1/3 self.encoder = ConformerEncoder( encoder_layer, num_encoder_layers, aux_layers=list( range( num_encoder_layers // 3, num_encoder_layers - 1, aux_layer_period, ) ), ) def forward( self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0 ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: x: The input tensor. Its shape is (batch_size, seq_len, feature_dim). x_lens: A tensor of shape (batch_size,) containing the number of frames in `x` before padding. warmup: A floating point value that gradually increases from 0 throughout training; when it is >= 1.0 we are "fully warmed up". It is used to turn modules on sequentially. Returns: Return a tuple containing 2 tensors: - embeddings: its shape is (batch_size, output_seq_len, d_model) - lengths, a tensor of shape (batch_size,) containing the number of frames in `embeddings` before padding. """ x = self.encoder_embed(x) x, pos_emb = self.encoder_pos(x) x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) lengths = (((x_lens - 1) >> 1) - 1) >> 1 assert x.size(0) == lengths.max().item() mask = make_pad_mask(lengths) x = self.encoder( x, pos_emb, src_key_padding_mask=mask, warmup=warmup ) # (T, N, C) x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) return x, lengths class ConformerEncoderLayer(nn.Module): """ ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks. See: "Conformer: Convolution-augmented Transformer for Speech Recognition" Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). cnn_module_kernel (int): Kernel size of convolution module. Examples:: >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> pos_emb = torch.rand(32, 19, 512) >>> out = encoder_layer(src, pos_emb) """ def __init__( self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, layer_dropout: float = 0.075, cnn_module_kernel: int = 31, ) -> None: super(ConformerEncoderLayer, self).__init__() self.layer_dropout = layer_dropout self.d_model = d_model self.self_attn = RelPositionMultiheadAttention( d_model, nhead, dropout=0.0 ) self.feed_forward = nn.Sequential( ScaledLinear(d_model, dim_feedforward), ActivationBalancer(channel_dim=-1), DoubleSwish(), nn.Dropout(dropout), ScaledLinear(dim_feedforward, d_model, initial_scale=0.25), ) self.feed_forward_macaron = nn.Sequential( ScaledLinear(d_model, dim_feedforward), ActivationBalancer(channel_dim=-1), DoubleSwish(), nn.Dropout(dropout), ScaledLinear(dim_feedforward, d_model, initial_scale=0.25), ) self.conv_module = ConvolutionModule(d_model, cnn_module_kernel) self.norm_final = BasicNorm(d_model) # try to ensure the output is close to zero-mean (or at least, zero-median). self.balancer = ActivationBalancer( channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0 ) self.dropout = nn.Dropout(dropout) def forward( self, src: Tensor, pos_emb: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, warmup: float = 1.0, ) -> Tensor: """ Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). pos_emb: Positional embedding tensor (required). src_mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). warmup: controls selective bypass of of layers; if < 1.0, we will bypass layers more frequently. Shape: src: (S, N, E). pos_emb: (N, 2*S-1, E) src_mask: (S, S). src_key_padding_mask: (N, S). S is the source sequence length, N is the batch size, E is the feature number """ src_orig = src warmup_scale = min(0.1 + warmup, 1.0) # alpha = 1.0 means fully use this encoder layer, 0.0 would mean # completely bypass it. if self.training: alpha = ( warmup_scale if torch.rand(()).item() <= (1.0 - self.layer_dropout) else 0.1 ) else: alpha = 1.0 # macaron style feed forward module src = src + self.dropout(self.feed_forward_macaron(src)) # multi-headed self-attention module src_att = self.self_attn( src, src, src, pos_emb=pos_emb, attn_mask=src_mask, key_padding_mask=src_key_padding_mask, )[0] src = src + self.dropout(src_att) # convolution module src = src + self.dropout(self.conv_module(src)) # feed forward module src = src + self.dropout(self.feed_forward(src)) src = self.norm_final(self.balancer(src)) if alpha != 1.0: src = alpha * src + (1 - alpha) * src_orig return src class ConformerEncoder(nn.Module): r"""ConformerEncoder is a stack of N encoder layers Args: encoder_layer: an instance of the ConformerEncoderLayer() class (required). num_layers: the number of sub-encoder-layers in the encoder (required). Examples:: >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8) >>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6) >>> src = torch.rand(10, 32, 512) >>> pos_emb = torch.rand(32, 19, 512) >>> out = conformer_encoder(src, pos_emb) """ def __init__( self, encoder_layer: nn.Module, num_layers: int, aux_layers: List[int], ) -> None: super().__init__() self.layers = nn.ModuleList( [copy.deepcopy(encoder_layer) for i in range(num_layers)] ) self.num_layers = num_layers assert len(set(aux_layers)) == len(aux_layers) assert num_layers - 1 not in aux_layers self.aux_layers = aux_layers + [num_layers - 1] self.combiner = RandomCombine( num_inputs=len(self.aux_layers), final_weight=0.5, pure_prob=0.333, stddev=2.0, ) def forward( self, src: Tensor, pos_emb: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, warmup: float = 1.0, ) -> Tensor: r"""Pass the input through the encoder layers in turn. Args: src: the sequence to the encoder (required). pos_emb: Positional embedding tensor (required). mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: src: (S, N, E). pos_emb: (N, 2*S-1, E) mask: (S, S). src_key_padding_mask: (N, S). S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number """ output = src outputs = [] for i, mod in enumerate(self.layers): output = mod( output, pos_emb, src_mask=mask, src_key_padding_mask=src_key_padding_mask, warmup=warmup, ) if i in self.aux_layers: outputs.append(output) output = self.combiner(outputs) return output class RelPositionalEncoding(torch.nn.Module): """Relative positional encoding module. See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py Args: d_model: Embedding dimension. dropout_rate: Dropout rate. max_len: Maximum input length. """ def __init__( self, d_model: int, dropout_rate: float, max_len: int = 5000 ) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model self.dropout = torch.nn.Dropout(p=dropout_rate) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) def extend_pe(self, x: Tensor) -> None: """Reset the positional encodings.""" if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device if self.pe.dtype != x.dtype or str(self.pe.device) != str( x.device ): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i Tuple[Tensor, Tensor]: """Add positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). torch.Tensor: Encoded tensor (batch, 2*time-1, `*`). """ self.extend_pe(x) pos_emb = self.pe[ :, self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 # noqa E203 + x.size(1), ] return self.dropout(x), self.dropout(pos_emb) class RelPositionMultiheadAttention(nn.Module): r"""Multi-Head Attention layer with relative position encoding See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. Examples:: >>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb) """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, ) -> None: super(RelPositionMultiheadAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True) self.out_proj = ScaledLinear( embed_dim, embed_dim, bias=True, initial_scale=0.25 ) # linear transformation for positional encoding. self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim)) self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim)) self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach()) self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach()) self._reset_parameters() def _pos_bias_u(self): return self.pos_bias_u * self.pos_bias_u_scale.exp() def _pos_bias_v(self): return self.pos_bias_v * self.pos_bias_v_scale.exp() def _reset_parameters(self) -> None: nn.init.normal_(self.pos_bias_u, std=0.01) nn.init.normal_(self.pos_bias_v, std=0.01) def forward( self, query: Tensor, key: Tensor, value: Tensor, pos_emb: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. pos_emb: Positional embedding tensor key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ return self.multi_head_attention_forward( query, key, value, pos_emb, self.embed_dim, self.num_heads, self.in_proj.get_weight(), self.in_proj.get_bias(), self.dropout, self.out_proj.get_weight(), self.out_proj.get_bias(), training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, ) def rel_shift(self, x: Tensor) -> Tensor: """Compute relative positional encoding. Args: x: Input tensor (batch, head, time1, 2*time1-1). time1 means the length of query vector. Returns: Tensor: tensor of shape (batch, head, time1, time2) (note: time2 has the same value as time1, but it is for the key, while time1 is for the query). """ (batch_size, num_heads, time1, n) = x.shape assert n == 2 * time1 - 1 # Note: TorchScript requires explicit arg for stride() batch_stride = x.stride(0) head_stride = x.stride(1) time1_stride = x.stride(2) n_stride = x.stride(3) return x.as_strided( (batch_size, num_heads, time1, time1), (batch_stride, head_stride, time1_stride - n_stride, n_stride), storage_offset=n_stride * (time1 - 1), ) def multi_head_attention_forward( self, query: Tensor, key: Tensor, value: Tensor, pos_emb: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. pos_emb: Positional embedding tensor embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert ( head_dim * num_heads == embed_dim ), "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = nn.functional.linear( query, in_proj_weight, in_proj_bias ).chunk(3, dim=-1) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = nn.functional.linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = nn.functional.linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = nn.functional.linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = nn.functional.linear(value, _w, _b) if attn_mask is not None: assert ( attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool ), "Only float, byte, and bool types are supported for attn_mask, not {}".format( attn_mask.dtype ) if attn_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for attn_mask is deprecated. Use bool tensor instead." ) attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError( "The size of the 2D attn_mask is not correct." ) elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: raise RuntimeError( "The size of the 3D attn_mask is not correct." ) else: raise RuntimeError( "attn_mask's dimension {} is not supported".format( attn_mask.dim() ) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if ( key_padding_mask is not None and key_padding_mask.dtype == torch.uint8 ): warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) key_padding_mask = key_padding_mask.to(torch.bool) q = (q * scaling).contiguous().view(tgt_len, bsz, num_heads, head_dim) k = k.contiguous().view(-1, bsz, num_heads, head_dim) v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) src_len = k.size(0) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz, "{} == {}".format( key_padding_mask.size(0), bsz ) assert key_padding_mask.size(1) == src_len, "{} == {}".format( key_padding_mask.size(1), src_len ) q = q.transpose(0, 1) # (batch, time1, head, d_k) pos_emb_bsz = pos_emb.size(0) assert pos_emb_bsz in (1, bsz) # actually it is 1 p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim) p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k) q_with_bias_u = (q + self._pos_bias_u()).transpose( 1, 2 ) # (batch, head, time1, d_k) q_with_bias_v = (q + self._pos_bias_v()).transpose( 1, 2 ) # (batch, head, time1, d_k) # compute attention score # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) matrix_ac = torch.matmul( q_with_bias_u, k ) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( q_with_bias_v, p.transpose(-2, -1) ) # (batch, head, time1, 2*time1-1) matrix_bd = self.rel_shift(matrix_bd) attn_output_weights = ( matrix_ac + matrix_bd ) # (batch, head, time1, time2) attn_output_weights = attn_output_weights.view( bsz * num_heads, tgt_len, -1 ) assert list(attn_output_weights.size()) == [ bsz * num_heads, tgt_len, src_len, ] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float("-inf")) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view( bsz, num_heads, tgt_len, src_len ) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float("-inf"), ) attn_output_weights = attn_output_weights.view( bsz * num_heads, tgt_len, src_len ) attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1) attn_output_weights = nn.functional.dropout( attn_output_weights, p=dropout_p, training=training ) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( attn_output.transpose(0, 1) .contiguous() .view(tgt_len, bsz, embed_dim) ) attn_output = nn.functional.linear( attn_output, out_proj_weight, out_proj_bias ) if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view( bsz, num_heads, tgt_len, src_len ) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None class ConvolutionModule(nn.Module): """ConvolutionModule in Conformer model. Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py Args: channels (int): The number of channels of conv layers. kernel_size (int): Kernerl size of conv layers. bias (bool): Whether to use bias in conv layers (default=True). """ def __init__( self, channels: int, kernel_size: int, bias: bool = True ) -> None: """Construct an ConvolutionModule object.""" super(ConvolutionModule, self).__init__() # kernerl_size should be a odd number for 'SAME' padding assert (kernel_size - 1) % 2 == 0 self.pointwise_conv1 = ScaledConv1d( channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias, ) # after pointwise_conv1 we put x through a gated linear unit (nn.functional.glu). # For most layers the normal rms value of channels of x seems to be in the range 1 to 4, # but sometimes, for some reason, for layer 0 the rms ends up being very large, # between 50 and 100 for different channels. This will cause very peaky and # sparse derivatives for the sigmoid gating function, which will tend to make # the loss function not learn effectively. (for most layers the average absolute values # are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion, # at the output of pointwise_conv1.output is around 0.35 to 0.45 for different # layers, which likely breaks down as 0.5 for the "linear" half and # 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that if we # constrain the rms values to a reasonable range via a constraint of max_abs=10.0, # it will be in a better position to start learning something, i.e. to latch onto # the correct range. self.deriv_balancer1 = ActivationBalancer( channel_dim=1, max_abs=10.0, min_positive=0.05, max_positive=1.0 ) self.depthwise_conv = ScaledConv1d( channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=bias, ) self.deriv_balancer2 = ActivationBalancer( channel_dim=1, min_positive=0.05, max_positive=1.0 ) self.activation = DoubleSwish() self.pointwise_conv2 = ScaledConv1d( channels, channels, kernel_size=1, stride=1, padding=0, bias=bias, initial_scale=0.25, ) def forward(self, x: Tensor) -> Tensor: """Compute convolution module. Args: x: Input tensor (#time, batch, channels). Returns: Tensor: Output tensor (#time, batch, channels). """ # exchange the temporal dimension and the feature dimension x = x.permute(1, 2, 0) # (#batch, channels, time). # GLU mechanism x = self.pointwise_conv1(x) # (batch, 2*channels, time) x = self.deriv_balancer1(x) x = nn.functional.glu(x, dim=1) # (batch, channels, time) # 1D Depthwise Conv x = self.depthwise_conv(x) x = self.deriv_balancer2(x) x = self.activation(x) x = self.pointwise_conv2(x) # (batch, channel, time) return x.permute(2, 0, 1) class Conv2dSubsampling(nn.Module): """Convolutional 2D subsampling (to 1/4 length). Convert an input of shape (N, T, idim) to an output with shape (N, T', odim), where T' = ((T-1)//2 - 1)//2, which approximates T' == T//4 It is based on https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa """ def __init__( self, in_channels: int, out_channels: int, layer1_channels: int = 8, layer2_channels: int = 32, layer3_channels: int = 128, ) -> None: """ Args: in_channels: Number of channels in. The input shape is (N, T, in_channels). Caution: It requires: T >=7, in_channels >=7 out_channels Output dim. The output shape is (N, ((T-1)//2 - 1)//2, out_channels) layer1_channels: Number of channels in layer1 layer1_channels: Number of channels in layer2 """ assert in_channels >= 7 super().__init__() self.conv = nn.Sequential( ScaledConv2d( in_channels=1, out_channels=layer1_channels, kernel_size=3, padding=1, ), ActivationBalancer(channel_dim=1), DoubleSwish(), ScaledConv2d( in_channels=layer1_channels, out_channels=layer2_channels, kernel_size=3, stride=2, ), ActivationBalancer(channel_dim=1), DoubleSwish(), ScaledConv2d( in_channels=layer2_channels, out_channels=layer3_channels, kernel_size=3, stride=2, ), ActivationBalancer(channel_dim=1), DoubleSwish(), ) self.out = ScaledLinear( layer3_channels * (((in_channels - 1) // 2 - 1) // 2), out_channels ) # set learn_eps=False because out_norm is preceded by `out`, and `out` # itself has learned scale, so the extra degree of freedom is not # needed. self.out_norm = BasicNorm(out_channels, learn_eps=False) # constrain median of output to be close to zero. self.out_balancer = ActivationBalancer( channel_dim=-1, min_positive=0.45, max_positive=0.55 ) def forward(self, x: torch.Tensor) -> torch.Tensor: """Subsample x. Args: x: Its shape is (N, T, idim). Returns: Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim) """ # On entry, x is (N, T, idim) x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W) x = self.conv(x) # Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2) b, c, t, f = x.size() x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) # Now x is of shape (N, ((T-1)//2 - 1))//2, odim) x = self.out_norm(x) x = self.out_balancer(x) return x class RandomCombine(nn.Module): """ This module combines a list of Tensors, all with the same shape, to produce a single output of that same shape which, in training time, is a random combination of all the inputs; but which in test time will be just the last input. All but the last input will have a linear transform before we randomly combine them; these linear transforms will be initialized to the identity transform. The idea is that the list of Tensors will be a list of outputs of multiple conformer layers. This has a similar effect as iterated loss. (See: DEJA-VU: DOUBLE FEATURE PRESENTATION AND ITERATED LOSS IN DEEP TRANSFORMER NETWORKS). """ def __init__( self, num_inputs: int, final_weight: float = 0.5, pure_prob: float = 0.5, stddev: float = 2.0, ) -> None: """ Args: num_inputs: The number of tensor inputs, which equals the number of layers' outputs that are fed into this module. E.g. in an 18-layer neural net if we output layers 16, 12, 18, num_inputs would be 3. final_weight: The amount of weight or probability we assign to the final layer when randomly choosing layers or when choosing continuous layer weights. pure_prob: The probability, on each frame, with which we choose only a single layer to output (rather than an interpolation) stddev: A standard deviation that we add to log-probs for computing randomized weights. The method of choosing which layers, or combinations of layers, to use, is conceptually as follows:: With probability `pure_prob`:: With probability `final_weight`: choose final layer, Else: choose random non-final layer. Else:: Choose initial log-weights that correspond to assigning weight `final_weight` to the final layer and equal weights to other layers; then add Gaussian noise with variance `stddev` to these log-weights, and normalize to weights (note: the average weight assigned to the final layer here will not be `final_weight` if stddev>0). """ super().__init__() assert 0 <= pure_prob <= 1, pure_prob assert 0 < final_weight < 1, final_weight assert num_inputs >= 1 self.num_inputs = num_inputs self.final_weight = final_weight self.pure_prob = pure_prob self.stddev = stddev self.final_log_weight = ( torch.tensor( (final_weight / (1 - final_weight)) * (self.num_inputs - 1) ) .log() .item() ) def forward(self, inputs: List[Tensor]) -> Tensor: """Forward function. Args: inputs: A list of Tensor, e.g. from various layers of a transformer. All must be the same shape, of (*, num_channels) Returns: A Tensor of shape (*, num_channels). In test mode this is just the final input. """ num_inputs = self.num_inputs assert len(inputs) == num_inputs if not self.training or torch.jit.is_scripting(): return inputs[-1] # Shape of weights: (*, num_inputs) num_channels = inputs[0].shape[-1] num_frames = inputs[0].numel() // num_channels ndim = inputs[0].ndim # stacked_inputs: (num_frames, num_channels, num_inputs) stacked_inputs = torch.stack(inputs, dim=ndim).reshape( (num_frames, num_channels, num_inputs) ) # weights: (num_frames, num_inputs) weights = self._get_random_weights( inputs[0].dtype, inputs[0].device, num_frames ) weights = weights.reshape(num_frames, num_inputs, 1) # ans: (num_frames, num_channels, 1) ans = torch.matmul(stacked_inputs, weights) # ans: (*, num_channels) ans = ans.reshape(inputs[0].shape[:-1] + (num_channels,)) # The following if causes errors for torch script in torch 1.6.0 # if __name__ == "__main__": # # for testing only... # print("Weights = ", weights.reshape(num_frames, num_inputs)) return ans def _get_random_weights( self, dtype: torch.dtype, device: torch.device, num_frames: int ) -> Tensor: """Return a tensor of random weights, of shape `(num_frames, self.num_inputs)`, Args: dtype: The data-type desired for the answer, e.g. float, double. device: The device needed for the answer. num_frames: The number of sets of weights desired Returns: A tensor of shape (num_frames, self.num_inputs), such that `ans.sum(dim=1)` is all ones. """ pure_prob = self.pure_prob if pure_prob == 0.0: return self._get_random_mixed_weights(dtype, device, num_frames) elif pure_prob == 1.0: return self._get_random_pure_weights(dtype, device, num_frames) else: p = self._get_random_pure_weights(dtype, device, num_frames) m = self._get_random_mixed_weights(dtype, device, num_frames) return torch.where( torch.rand(num_frames, 1, device=device) < self.pure_prob, p, m ) def _get_random_pure_weights( self, dtype: torch.dtype, device: torch.device, num_frames: int ): """Return a tensor of random one-hot weights, of shape `(num_frames, self.num_inputs)`, Args: dtype: The data-type desired for the answer, e.g. float, double. device: The device needed for the answer. num_frames: The number of sets of weights desired. Returns: A one-hot tensor of shape `(num_frames, self.num_inputs)`, with exactly one weight equal to 1.0 on each frame. """ final_prob = self.final_weight # final contains self.num_inputs - 1 in all elements final = torch.full((num_frames,), self.num_inputs - 1, device=device) # nonfinal contains random integers in [0..num_inputs - 2], these are for non-final weights. nonfinal = torch.randint( self.num_inputs - 1, (num_frames,), device=device ) indexes = torch.where( torch.rand(num_frames, device=device) < final_prob, final, nonfinal ) ans = torch.nn.functional.one_hot( indexes, num_classes=self.num_inputs ).to(dtype=dtype) return ans def _get_random_mixed_weights( self, dtype: torch.dtype, device: torch.device, num_frames: int ): """Return a tensor of random one-hot weights, of shape `(num_frames, self.num_inputs)`, Args: dtype: The data-type desired for the answer, e.g. float, double. device: The device needed for the answer. num_frames: The number of sets of weights desired. Returns: A tensor of shape (num_frames, self.num_inputs), which elements in [0..1] that sum to one over the second axis, i.e. `ans.sum(dim=1)` is all ones. """ logprobs = ( torch.randn(num_frames, self.num_inputs, dtype=dtype, device=device) * self.stddev ) logprobs[:, -1] += self.final_log_weight return logprobs.softmax(dim=1) def _test_random_combine(final_weight: float, pure_prob: float, stddev: float): print( f"_test_random_combine: final_weight={final_weight}, pure_prob={pure_prob}, stddev={stddev}" ) num_inputs = 3 num_channels = 50 m = RandomCombine( num_inputs=num_inputs, num_channels=num_channels, final_weight=final_weight, pure_prob=pure_prob, stddev=stddev, ) x = [torch.ones(3, 4, num_channels) for _ in range(num_inputs)] y = m(x) assert y.shape == x[0].shape assert torch.allclose(y, x[0]) # .. since actually all ones. def _test_random_combine_main(): _test_random_combine(0.999, 0, 0.0) _test_random_combine(0.5, 0, 0.0) _test_random_combine(0.999, 0, 0.0) _test_random_combine(0.5, 0, 0.3) _test_random_combine(0.5, 1, 0.3) _test_random_combine(0.5, 0.5, 0.3) feature_dim = 50 c = Conformer( num_features=feature_dim, output_dim=256, d_model=128, nhead=4 ) batch_size = 5 seq_len = 20 # Just make sure the forward pass runs. f = c( torch.randn(batch_size, seq_len, feature_dim), torch.full((batch_size,), seq_len, dtype=torch.int64), ) f # to remove flake8 warnings if __name__ == "__main__": feature_dim = 50 c = Conformer(num_features=feature_dim, d_model=128, nhead=4) batch_size = 5 seq_len = 20 # Just make sure the forward pass runs. f = c( torch.randn(batch_size, seq_len, feature_dim), torch.full((batch_size,), seq_len, dtype=torch.int64), warmup=0.5, ) _test_random_combine_main()