#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file computes fbank features of the musan dataset. It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ import logging from pathlib import Path import torch from lhotse import CutSet, LilcomChunkyWriter, combine from lhotse.features.kaldifeat import ( KaldifeatFbank, KaldifeatFbankConfig, KaldifeatFrameOptions, KaldifeatMelOptions, ) from lhotse.recipes.utils import read_manifests_if_cached # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) def compute_fbank_musan(): src_dir = Path("data/manifests") output_dir = Path("data/fbank") sampling_rate = 16000 num_mel_bins = 80 dataset_parts = ( "music", "speech", "noise", ) prefix = "musan" suffix = "jsonl.gz" manifests = read_manifests_if_cached( dataset_parts=dataset_parts, output_dir=src_dir, prefix=prefix, suffix=suffix, ) assert manifests is not None assert len(manifests) == len(dataset_parts), ( len(manifests), len(dataset_parts), list(manifests.keys()), dataset_parts, ) musan_cuts_path = src_dir / "musan_cuts.jsonl.gz" if musan_cuts_path.is_file(): logging.info(f"{musan_cuts_path} already exists - skipping") return logging.info("Extracting features for Musan") extractor = KaldifeatFbank( KaldifeatFbankConfig( frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), device="cuda", ) ) # create chunks of Musan with duration 5 - 10 seconds _ = ( CutSet.from_manifests( recordings=combine(part["recordings"] for part in manifests.values()) ) .cut_into_windows(10.0) .filter(lambda c: c.duration > 5) .compute_and_store_features_batch( extractor=extractor, storage_path=output_dir / "musan_feats", manifest_path=musan_cuts_path, batch_duration=500, num_workers=4, storage_type=LilcomChunkyWriter, ) ) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_musan()