#!/usr/bin/env python3 # Copyright (c) 2022 Xiaomi Corporation (author: Daniel Povey) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import math import warnings from typing import Optional, Tuple import logging import torch from torch import Tensor, nn # some utilities for diagnalizing models (rotating their parameters matrices # so that large and small parameter values are separated as much as possible). def _get_normalized_covar(x: Tensor) -> Tensor: """ Returns a covariance matrix normalized to have trace==dim, equal to matmul(x , x.t()) times a constant. Args: x: a matrix of shape (i, j) Returns: a covariance matrix of shape (i, i), equal to matmul(x, x.t()) """ covar = torch.matmul(x, x.t()) return covar * (x.shape[0] / (covar.trace() + 1.0e-20)) @torch.no_grad() def get_diag_covar_in(m: nn.Module) -> Tensor: """ Returns a covariance matrix that shows, in the input space of this module, which direction parameter matrices vary in. """ if isinstance(m, nn.Linear): return _get_normalized_covar(m.weight.t()); elif isinstance(m, nn.Conv1d) or isinstance(m, nn.Conv2d): # m.weight is of size (out_channels, in_channels, kernel_size) # or (out_channels, in_channels, kernel_dim0, kernel_dim1) # assert here that groups == 1 w = m.weight assert m.groups == 1 out_channels = w.shape[0] in_channels = w.shape[1] w = w.reshape(out_channels, in_channels, -1) w = w.permute(1, 0, 2) # (in_channels, out_channels, kernel_size) w = w.reshape(in_channels, -1) return _get_normalized_covar(w) # (in_channels, in_channels) elif isinstance(m, nn.Sequential): return get_diag_covar_in(m[0], t) else: # some modules have this function; if not, at this point, it is an error. return m.get_diag_covar_in() @torch.no_grad() def get_diag_covar_out(m: nn.Module) -> Tensor: """ Returns a covariance matrix that shows, in the output space of this module, which direction parameter matrices vary in. """ if isinstance(m, nn.Linear): return _get_normalized_covar(m.weight); elif isinstance(m, nn.Conv1d) or isinstance(m, nn.Conv2d): # m.weight is of size (out_channels, in_channels, kernel_size) # or (out_channels, in_channels, kernel_dim0, kernel_dim1) # assert here that groups == 1 w = m.weight assert m.groups == 1 out_channels = w.shape[0] in_channels = w.shape[1] w = w.reshape(out_channels, -1) return _get_normalized_covar(w) # (out_channels, out_channels) w = w.permute(1, 0, 2) # (in_channels, out_channels, kernel_size) w = w.reshape(in_channels, -1) return _get_normalized_covar(x) # (in_channels, in_channels) elif isinstance(m, nn.Sequential): return get_diag_covar_out(m[-1]) else: # some modules have this function; if not, at this point, it is an error. return m.get_diag_covar_out() @torch.no_grad() def get_diag_covar_inout(m: nn.Module) -> Tensor: """ Returns a covariance matrix that shows, in the input and output space of this module, which are assumed to be the same (e.g if it is a module intended to be added to a residual/ bypass connection), which direction parameter matrices vary in. """ if isinstance(m, nn.Sequential): # this is only correct if it's a Sequential of non-residual modules. return get_diag_covar_in(m[0]) + get_diag_covar_out(m[-1]) else: # some modules have this function; if not, at this point, it is an error. return m.get_diag_covar_inout() @torch.no_grad() def apply_transformation_in(m: nn.Module, t: Tensor) -> None: """ Applies this transformation matrix on the input space of this module. Args: m: module to transform on the input space t: transformation matrix, indexed (new_dim_in, old_dim_in) """ if isinstance(m, nn.Linear): m.weight[:] = torch.matmul(m.weight, t.t()) elif isinstance(m, nn.Conv1d) or isinstance(m, nn.Conv2d): # m.weight is of size (out_channels, in_channels, kernel_size) # or (out_channels, in_channels, kernel_dim0, kernel_dim1) # assert here that groups == 1 w = m.weight assert m.groups == 1 out_channels = w.shape[0] in_channels = w.shape[1] w = w.reshape(out_channels, in_channels, -1) w = w.permute(1, 0, 2) # (in_channels, out_channels, kernel_size) w = w.reshape(in_channels, -1) w = torch.matmul(t, w).reshape(in_channels, out_channels, -1) # (in_channels, out_channels, kernel_size) w = w.permute(1, 0, 2) # (out_channels, in_channels, kernel_size) w = w.reshape(m.weight.shape) # (out_channels, in_channels, [1 or 2 kernel dims]) m.weight[:] = w elif isinstance(m, nn.Sequential): apply_transformation_in(m[0], t) else: # some modules have this function; if not, at this point, it is an error. m.apply_transformation_in(t) @torch.no_grad() def apply_transformation_out(m: nn.Module, t: Tensor) -> None: """ Applies this transformation matrix on the output space of this module. Args: m: module to transform on the input space t: transformation matrix, indexed (new_dim_out, old_dim_out) """ if isinstance(m, nn.Linear): m.weight[:] = torch.matmul(t, m.weight) if m.bias is not None: m.bias[:] = torch.matmul(t, m.bias) elif isinstance(m, nn.Conv1d) or isinstance(m, nn.Conv2d): # m.weight is of size (out_channels, in_channels, kernel_size) # or (out_channels, in_channels, kernel_dim0, kernel_dim1) # assert here that groups == 1 w = m.weight assert m.groups == 1 out_channels = w.shape[0] in_channels = w.shape[1] w = w.reshape(out_channels, -1) w = torch.matmul(t, w) w = w.reshape(m.weight.shape) # (out_channels, in_channels, [1 or 2 kernel dims]) m.weight[:] = w if m.bias is not None: m.bias[:] = torch.matmul(t, m.bias) elif isinstance(m, nn.Sequential): apply_transformation_out(m[-1], t) else: # some modules have this function; if not, at this point, it is an error. m.apply_transformation_out(t) @torch.no_grad() def apply_transformation_inout(m: nn.Module, t: Tensor) -> None: if isinstance(m, nn.Sequential): apply_transformation_in(m, t) apply_transformation_out(m, t) else: # some modules have this function; if not, at this point, it is an error. m.apply_transformation_inout(t) def get_transformation(cov: Tensor) -> Tensor: """ Returns a covariance-diagonalizing transformation that diagonalizes the covariance matrix that is passed in. Args: cov, of shape (dim0, dim0). Returns: a transformation indexed (new_dim0, old_dim0), i.e. of shape dim0 by dim0 but 1st index is the newly created indexes. """ old_diag_stddev = cov.diag().var().sqrt().item() l, U = cov.symeig(eigenvectors=True) new_diag_stddev = l.var().sqrt().item() logging.info(f"Variance of diag of param-var changed from {old_diag_stddev:.3e} " f"to {new_diag_stddev:.3e}, max diag elem changed from {cov.diag().max().item():.2e} to {l[-1].item():.2e}") return U.t() # U.t() is indexed (new_dim, old_dim)