#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, # Fangjun Kuang, # Wei Kang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging from collections import defaultdict from pathlib import Path from typing import Dict, List, Optional, Tuple import whisper from whisper.normalizers import BasicTextNormalizer import k2 import torch import torch.nn as nn from asr_datamodule import WenetSpeechAsrDataModule from model import load_model from icefall.checkpoint import load_checkpoint, average_checkpoints_with_averaged_model from icefall.decode import ( get_lattice, nbest_decoding, nbest_oracle, one_best_decoding, rescore_with_attention_decoder, ) from lhotse.cut import Cut from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, get_texts, setup_logger, store_transcripts, write_error_stats, ) from zhconv import convert from tn.chinese.normalizer import Normalizer import re def average_checkpoints( filenames: List[Path], device: torch.device = torch.device("cpu") ) -> dict: """Average a list of checkpoints. Args: filenames: Filenames of the checkpoints to be averaged. We assume all checkpoints are saved by :func:`save_checkpoint`. device: Move checkpoints to this device before averaging. Returns: Return a dict (i.e., state_dict) which is the average of all model state dicts contained in the checkpoints. """ n = len(filenames) if "model" in torch.load(filenames[0], map_location=device): avg = torch.load(filenames[0], map_location=device)["model"] else: avg = torch.load(filenames[0], map_location=device) # Identify shared parameters. Two parameters are said to be shared # if they have the same data_ptr uniqued: Dict[int, str] = dict() for k, v in avg.items(): v_data_ptr = v.data_ptr() if v_data_ptr in uniqued: continue uniqued[v_data_ptr] = k uniqued_names = list(uniqued.values()) for i in range(1, n): if "model" in torch.load(filenames[i], map_location=device): state_dict = torch.load(filenames[i], map_location=device)["model"] else: state_dict = torch.load(filenames[i], map_location=device) for k in uniqued_names: avg[k] += state_dict[k] for k in uniqued_names: if avg[k].is_floating_point(): avg[k] /= n else: avg[k] //= n return avg def remove_punctuation(text: str or List[str]): # https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py punctuation = '!,.;:?、!,。;:?' if isinstance(text, str): text = re.sub(r'[{}]+'.format(punctuation), '', text).strip() return text elif isinstance(text, list): result_text = [] for t in text: t = re.sub(r'[{}]+'.format(punctuation), '', t).strip() result_text.append(t) return result_text else: raise Exception(f'Not support type {type(text)}') def to_simple(text: str or List[str]): if isinstance(text, str): text = convert(text, 'zh-cn') return text elif isinstance(text, list): result_text = [] for t in text: t = convert(t, 'zh-cn') result_text.append(t) return result_text else: raise Exception(f'Not support type{type(text)}') def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=-1, help="It specifies the checkpoint to use for decoding." "Note: Epoch counts from 0.", ) parser.add_argument( "--avg", type=int, default=1, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", ) parser.add_argument( "--method", type=str, default="beam-search", help="""Decoding method. Supported values are: - beam-search """, ) parser.add_argument( "--beam-size", type=int, default=1, help="beam size for beam search decoding", ) parser.add_argument( "--exp-dir", type=str, default="whisper/exp", help="The experiment dir", ) parser.add_argument( "--model-name", type=str, default="large-v2", choices=["large-v2", "large-v3", "medium", "small", "tiny"], help="""The model name to use. """, ) return parser def get_params() -> AttributeDict: params = AttributeDict( { "env_info": get_env_info(), } ) return params def decode_one_batch( params: AttributeDict, model: nn.Module, batch: dict, ) -> Dict[str, List[List[int]]]: """Decode one batch and return the result in a dict. The dict has the following format: - key: It indicates the setting used for decoding. For example, if decoding method is 1best, the key is the string `no_rescore`. If attention rescoring is used, the key is the string `ngram_lm_scale_xxx_attention_scale_xxx`, where `xxx` is the value of `lm_scale` and `attention_scale`. An example key is `ngram_lm_scale_0.7_attention_scale_0.5` - value: It contains the decoding result. `len(value)` equals to batch size. `value[i]` is the decoding result for the i-th utterance in the given batch. Args: params: It's the return value of :func:`get_params`. - params.method is "1best", it uses 1best decoding without LM rescoring. - params.method is "nbest", it uses nbest decoding without LM rescoring. - params.method is "attention-decoder", it uses attention rescoring. model: The neural model. HLG: The decoding graph. Used when params.method is NOT ctc-decoding. H: The ctc topo. Used only when params.method is ctc-decoding. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. lexicon: It contains the token symbol table and the word symbol table. sos_id: The token ID of the SOS. eos_id: The token ID of the EOS. Returns: Return the decoding result. See above description for the format of the returned dict. """ dtype = torch.float16 device = torch.device("cuda") feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device, dtype=dtype).transpose(1, 2) T = 3000 if feature.shape[2] < T: feature = torch.cat([feature, torch.zeros(feature.shape[0], feature.shape[1], T - feature.shape[2]).to(device, dtype=dtype)], 2) supervisions = batch["supervisions"] feature_len = supervisions["num_frames"] feature_len = feature_len.to(device, dtype=dtype) results = model.decode(feature, params.decoding_options) hyps = [result.text for result in results] hyps = remove_punctuation(hyps) hyps = to_simple(hyps) hyps = [params.normalizer.normalize(hyp) for hyp in hyps] print(hyps) key = "beam-search" return {key: hyps} def decode_dataset( dl: torch.utils.data.DataLoader, params: AttributeDict, model: nn.Module, ) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: """Decode dataset. Args: dl: PyTorch's dataloader containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. HLG: The decoding graph. Used when params.method is NOT ctc-decoding. H: The ctc topo. Used only when params.method is ctc-decoding. lexicon: It contains the token symbol table and the word symbol table. sos_id: The token ID for SOS. eos_id: The token ID for EOS. Returns: Return a dict, whose key may be "no-rescore" if the decoding method is 1best or it may be "ngram_lm_scale_0.7_attention_scale_0.5" if attention rescoring is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ results = [] num_cuts = 0 try: num_batches = len(dl) except TypeError: num_batches = "?" results = defaultdict(list) for batch_idx, batch in enumerate(dl): texts = batch["supervisions"]["text"] cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] hyps_dict = decode_one_batch( params=params, model=model, batch=batch, ) for lm_scale, hyps in hyps_dict.items(): this_batch = [] assert len(hyps) == len(texts) for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): ref_words = ref_text.split() this_batch.append((cut_id, ref_words, hyp_words)) results[lm_scale].extend(this_batch) num_cuts += len(batch["supervisions"]["text"]) if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results def save_results( params: AttributeDict, test_set_name: str, results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], ): enable_log = True test_set_wers = dict() for key, results in results_dict.items(): recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" results = sorted(results) store_transcripts(filename=recog_path, texts=results) if enable_log: logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" # we compute CER for aishell dataset. results_char = [] for res in results: results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results_char, enable_log=enable_log ) test_set_wers[key] = wer if enable_log: logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt" with open(errs_info, "w") as f: print("settings\tCER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) s = "\nFor {}, CER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) note = "" logging.info(s) @torch.no_grad() def main(): parser = get_parser() WenetSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" setup_logger(f"{params.exp_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}") options = whisper.DecodingOptions(task="transcribe", language="zh", without_timestamps=True, beam_size=params.beam_size) params.decoding_options = options params.cleaner = BasicTextNormalizer() params.normalizer = Normalizer() logging.info("Decoding started") logging.info(params) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda") logging.info(f"device: {device}") model = whisper.load_model(params.model_name) if params.epoch > 0: if params.avg > 1: start = params.epoch - params.avg assert start >= 1, start checkpoint = torch.load(f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location='cpu') if 'model' not in checkpoint: filenames = [f"{params.exp_dir}/epoch-{epoch}.pt" for epoch in range(start, params.epoch + 1)] model.load_state_dict(average_checkpoints(filenames)) else: filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) # save checkpoints filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt" torch.save(model.state_dict(), filename) else: checkpoint = torch.load(f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location='cpu') if 'model' not in checkpoint: model.load_state_dict(checkpoint, strict=True) else: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) model.to(device) model.eval() num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") # we need cut ids to display recognition results. args.return_cuts = True wenetspeech = WenetSpeechAsrDataModule(args) def remove_short_utt(c: Cut): T = ((c.num_frames - 7) // 2 + 1) // 2 if T <= 0: logging.warning( f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}." ) return T > 0 # dev_cuts = wenetspeech.valid_cuts() # dev_cuts = dev_cuts.filter(remove_short_utt) # dev_dl = wenetspeech.valid_dataloaders(dev_cuts) # test_net_cuts = wenetspeech.test_net_cuts() # test_net_cuts = test_net_cuts.filter(remove_short_utt) # test_net_dl = wenetspeech.test_dataloaders(test_net_cuts) test_meeting_cuts = wenetspeech.test_meeting_cuts() test_meeting_cuts = test_meeting_cuts.filter(remove_short_utt) test_meeting_dl = wenetspeech.test_dataloaders(test_meeting_cuts) # test_sets = ["DEV", "TEST_NET", "TEST_MEETING"] # test_dls = [dev_dl, test_net_dl, test_meeting_dl] test_sets = ["TEST_MEETING"] test_dls = [test_meeting_dl] for test_set, test_dl in zip(test_sets, test_dls): results_dict = decode_dataset( dl=test_dl, params=params, model=model, ) save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") torch.set_num_threads(1) torch.set_num_interop_threads(1) if __name__ == "__main__": main()