#!/usr/bin/env python3 # Copyright 2022 The University of Electro-Communications (Author: Teo Wen Shen) # noqa # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os from itertools import islice from pathlib import Path from random import Random from typing import List, Tuple import torch from lhotse import ( # fmt: off; See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527; fmt: on CutSet, Fbank, FbankConfig, LilcomChunkyWriter, RecordingSet, SupervisionSet, ) ARGPARSE_DESCRIPTION = """ This script follows the espnet method of splitting the remaining core+noncore utterances into valid and train cutsets at an index which is by default 4000. In other words, the core+noncore utterances are shuffled, where 4000 utterances of the shuffled set go to the `valid` cutset and are not subject to speed perturbation. The remaining utterances become the `train` cutset and are speed- perturbed (0.9x, 1.0x, 1.1x). """ # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) RNG_SEED = 42 def make_cutset_blueprints( manifest_dir: Path, split: int, ) -> List[Tuple[str, CutSet]]: cut_sets = [] # Create eval datasets logging.info("Creating eval cuts.") for i in range(1, 4): cut_set = CutSet.from_manifests( recordings=RecordingSet.from_file( manifest_dir / f"csj_recordings_eval{i}.jsonl.gz" ), supervisions=SupervisionSet.from_file( manifest_dir / f"csj_supervisions_eval{i}.jsonl.gz" ), ) cut_set = cut_set.trim_to_supervisions(keep_overlapping=False) cut_sets.append((f"eval{i}", cut_set)) # Create train and valid cuts logging.info("Loading, trimming, and shuffling the remaining core+noncore cuts.") recording_set = RecordingSet.from_file( manifest_dir / "csj_recordings_core.jsonl.gz" ) + RecordingSet.from_file(manifest_dir / "csj_recordings_noncore.jsonl.gz") supervision_set = SupervisionSet.from_file( manifest_dir / "csj_supervisions_core.jsonl.gz" ) + SupervisionSet.from_file(manifest_dir / "csj_supervisions_noncore.jsonl.gz") cut_set = CutSet.from_manifests( recordings=recording_set, supervisions=supervision_set, ) cut_set = cut_set.trim_to_supervisions(keep_overlapping=False) cut_set = cut_set.shuffle(Random(RNG_SEED)) logging.info( f"Creating valid and train cuts from core and noncore,split at {split}." ) valid_set = CutSet.from_cuts(islice(cut_set, 0, split)) train_set = CutSet.from_cuts(islice(cut_set, split, None)) train_set = train_set + train_set.perturb_speed(0.9) + train_set.perturb_speed(1.1) cut_sets.extend([("valid", valid_set), ("train", train_set)]) return cut_sets def get_args(): parser = argparse.ArgumentParser( description=ARGPARSE_DESCRIPTION, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("--manifest-dir", type=Path, help="Path to save manifests") parser.add_argument("--fbank-dir", type=Path, help="Path to save fbank features") parser.add_argument("--split", type=int, default=4000, help="Split at this index") return parser.parse_args() def main(): args = get_args() extractor = Fbank(FbankConfig(num_mel_bins=80)) num_jobs = min(16, os.cpu_count()) formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) if (args.fbank_dir / ".done").exists(): logging.info( "Previous fbank computed for CSJ found. " f"Delete {args.fbank_dir / '.done'} to allow recomputing fbank." ) return else: cut_sets = make_cutset_blueprints(args.manifest_dir, args.split) for part, cut_set in cut_sets: logging.info(f"Processing {part}") cut_set = cut_set.compute_and_store_features( extractor=extractor, num_jobs=num_jobs, storage_path=(args.fbank_dir / f"feats_{part}").as_posix(), storage_type=LilcomChunkyWriter, ) cut_set.to_file(args.manifest_dir / f"csj_cuts_{part}.jsonl.gz") logging.info("All fbank computed for CSJ.") (args.fbank_dir / ".done").touch() if __name__ == "__main__": main()