#!/usr/bin/env python3 # # Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script converts several saved checkpoints # to a single one using model averaging. import argparse import logging from pathlib import Path import torch from conformer import Conformer from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.lexicon import Lexicon from icefall.utils import AttributeDict, str2bool def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=84, help=( "It specifies the checkpoint to use for decoding.Note: Epoch counts from 0." ), ) parser.add_argument( "--avg", type=int, default=25, help=( "Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch'. " ), ) parser.add_argument( "--exp-dir", type=str, default="conformer_ctc/exp", help="""It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--lang-dir", type=str, default="data/lang_char", help="""It contains language related input files such as "lexicon.txt" """, ) parser.add_argument( "--jit", type=str2bool, default=True, help="""True to save a model after applying torch.jit.script. """, ) return parser def get_params() -> AttributeDict: params = AttributeDict( { "feature_dim": 80, "subsampling_factor": 4, "use_feat_batchnorm": True, "attention_dim": 512, "nhead": 4, "num_decoder_layers": 6, } ) return params def main(): args = get_parser().parse_args() args.exp_dir = Path(args.exp_dir) args.lang_dir = Path(args.lang_dir) params = get_params() params.update(vars(args)) logging.info(params) lexicon = Lexicon(params.lang_dir) max_token_id = max(lexicon.tokens) num_classes = max_token_id + 1 # +1 for the blank device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") model = Conformer( num_features=params.feature_dim, nhead=params.nhead, d_model=params.attention_dim, num_classes=num_classes, subsampling_factor=params.subsampling_factor, num_decoder_layers=params.num_decoder_layers, vgg_frontend=False, use_feat_batchnorm=params.use_feat_batchnorm, ) model.to(device) if params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if start >= 0: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames)) model.to("cpu") model.eval() if params.jit: logging.info("Using torch.jit.script") model = torch.jit.script(model) filename = params.exp_dir / "cpu_jit.pt" model.save(str(filename)) logging.info(f"Saved to {filename}") else: logging.info("Not using torch.jit.script") # Save it using a format so that it can be loaded # by :func:`load_checkpoint` filename = params.exp_dir / "pretrained.pt" torch.save({"model": model.state_dict()}, str(filename)) logging.info(f"Saved to {filename}") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()