#!/usr/bin/env python3 # # Copyright 2024 Xiaomi Corporation (Author: Wei Kang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script converts several saved checkpoints # to a single one using model averaging. """ Usage: Note: This is a example for libritts dataset, if you are using different dataset, you should change the argument values according to your dataset. (1) Export to torchscript model using torch.jit.script() ./vocos/export.py \ --exp-dir ./vocos/exp \ --epoch 30 \ --avg 9 \ --jit 1 It will generate a file `jit_script.pt` in the given `exp_dir`. You can later load it by `torch.jit.load("jit_script.pt")`. Check ./jit_pretrained.py for its usage. Check https://github.com/k2-fsa/sherpa for how to use the exported models outside of icefall. - For streaming model: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 \ --jit 1 It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`. You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`. Check ./jit_pretrained_streaming.py for its usage. Check https://github.com/k2-fsa/sherpa for how to use the exported models outside of icefall. (2) Export `model.state_dict()` - For non-streaming model: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 - For streaming model: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --causal 1 \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 It will generate a file `pretrained.pt` in the given `exp_dir`. You can later load it by `icefall.checkpoint.load_checkpoint()`. - For non-streaming model: To use the generated file with `zipformer/decode.py`, you can do: cd /path/to/exp_dir ln -s pretrained.pt epoch-9999.pt cd /path/to/egs/librispeech/ASR ./zipformer/decode.py \ --exp-dir ./zipformer/exp \ --epoch 9999 \ --avg 1 \ --max-duration 600 \ --decoding-method greedy_search \ --bpe-model data/lang_bpe_500/bpe.model - For streaming model: To use the generated file with `zipformer/decode.py` and `zipformer/streaming_decode.py`, you can do: cd /path/to/exp_dir ln -s pretrained.pt epoch-9999.pt cd /path/to/egs/librispeech/ASR # simulated streaming decoding ./zipformer/decode.py \ --exp-dir ./zipformer/exp \ --epoch 9999 \ --avg 1 \ --max-duration 600 \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --decoding-method greedy_search \ --bpe-model data/lang_bpe_500/bpe.model # chunk-wise streaming decoding ./zipformer/streaming_decode.py \ --exp-dir ./zipformer/exp \ --epoch 9999 \ --avg 1 \ --max-duration 600 \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --decoding-method greedy_search \ --bpe-model data/lang_bpe_500/bpe.model Check ./pretrained.py for its usage. Note: If you don't want to train a model from scratch, we have provided one for you. You can get it at - non-streaming model: https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15 - streaming model: https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17 with the following commands: sudo apt-get install git-lfs git lfs install git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17 # You will find the pre-trained models in exp dir """ import argparse import logging from pathlib import Path from typing import List, Tuple import torch from torch import Tensor, nn from train import add_model_arguments, get_model, get_params from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, ) from icefall.utils import str2bool from utils import load_checkpoint def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--sampling-rate", type=int, default=24000, help="The sampleing rate of libritts dataset", ) parser.add_argument( "--frame-shift", type=int, default=256, help="Frame shift.", ) parser.add_argument( "--frame-length", type=int, default=1024, help="Frame shift.", ) parser.add_argument( "--epoch", type=int, default=30, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=9, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=True, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--exp-dir", type=str, default="vocos/exp", help="""It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--jit", type=str2bool, default=False, help="""True to save a model after applying torch.jit.script. It will generate a file named jit_script.pt. Check ./jit_pretrained.py for how to use it. """, ) add_model_arguments(parser) return parser class EncoderModel(nn.Module): """A wrapper for encoder and encoder_embed""" def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None: super().__init__() self.encoder = encoder self.encoder_embed = encoder_embed def forward( self, features: Tensor, feature_lengths: Tensor ) -> Tuple[Tensor, Tensor]: """ Args: features: (N, T, C) feature_lengths: (N,) """ x, x_lens = self.encoder_embed(features, feature_lengths) src_key_padding_mask = make_pad_mask(x_lens) x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask) encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C) return encoder_out, encoder_out_lens @torch.no_grad() def main(): args = get_parser().parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) device = torch.device("cpu") params.device = device logging.info(f"device: {device}") logging.info(params) logging.info("About to create model") model = get_model(params) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.eval() model = model.generator if params.jit is True: model.encoder = EncoderModel(model.encoder, model.encoder_embed) filename = "jit_script.pt" logging.info("Using torch.jit.script") model = torch.jit.script(model) model.save(str(params.exp_dir / filename)) logging.info(f"Saved to {filename}") else: logging.info("Not using torchscript. Export model.state_dict()") # Save it using a format so that it can be loaded # by :func:`load_checkpoint` filename = params.exp_dir / "generator.pt" torch.save({"model": model.state_dict()}, str(filename)) logging.info(f"Saved to {filename}") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()