#!/usr/bin/env python3 # # Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang, Wei Kang) # Copyright 2023 Danqing Fu (danqing.fu@gmail.com) """ This script exports a transducer model from PyTorch to ONNX. We use the pre-trained model from https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15 as an example to show how to use this file. 1. Download the pre-trained model cd egs/librispeech/ASR repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15 GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url repo=$(basename $repo_url) pushd $repo git lfs pull --include "exp/pretrained.pt" cd exp ln -s pretrained.pt epoch-99.pt popd 2. Export the model to ONNX ./zipformer/export-onnx.py \ --tokens $repo/data/lang_bpe_500/tokens.txt \ --use-averaged-model 0 \ --epoch 99 \ --avg 1 \ --exp-dir $repo/exp \ --num-encoder-layers "2,2,3,4,3,2" \ --downsampling-factor "1,2,4,8,4,2" \ --feedforward-dim "512,768,1024,1536,1024,768" \ --num-heads "4,4,4,8,4,4" \ --encoder-dim "192,256,384,512,384,256" \ --query-head-dim 32 \ --value-head-dim 12 \ --pos-head-dim 4 \ --pos-dim 48 \ --encoder-unmasked-dim "192,192,256,256,256,192" \ --cnn-module-kernel "31,31,15,15,15,31" \ --decoder-dim 512 \ --joiner-dim 512 \ --causal False \ --chunk-size "16,32,64,-1" \ --left-context-frames "64,128,256,-1" \ --fp16 True It will generate the following 3 files inside $repo/exp: - encoder-epoch-99-avg-1.onnx - decoder-epoch-99-avg-1.onnx - joiner-epoch-99-avg-1.onnx See ./onnx_pretrained.py and ./onnx_check.py for how to use the exported ONNX models. """ import argparse import logging from pathlib import Path from typing import Dict, Tuple import onnx import torch import torch.nn as nn from onnxconverter_common import float16 from onnxruntime.quantization import QuantType, quantize_dynamic from train import add_model_arguments, get_model, get_params from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.utils import make_pad_mask, num_tokens, str2bool def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--sampling-rate", type=int, default=24000, help="The sampleing rate of libritts dataset", ) parser.add_argument( "--frame-shift", type=int, default=256, help="Frame shift.", ) parser.add_argument( "--frame-length", type=int, default=1024, help="Frame shift.", ) parser.add_argument( "--epoch", type=int, default=28, help="""It specifies the checkpoint to use for averaging. Note: Epoch counts from 0. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=True, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--exp-dir", type=str, default="zipformer/exp", help="""It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--fp16", type=str2bool, default=False, help="Whether to export models in fp16", ) add_model_arguments(parser) return parser def add_meta_data(filename: str, meta_data: Dict[str, str]): """Add meta data to an ONNX model. It is changed in-place. Args: filename: Filename of the ONNX model to be changed. meta_data: Key-value pairs. """ model = onnx.load(filename) for key, value in meta_data.items(): meta = model.metadata_props.add() meta.key = key meta.value = value onnx.save(model, filename) def export_model_onnx( model: nn.Module, model_filename: str, opset_version: int = 13, ) -> None: """Export the joiner model to ONNX format. The exported joiner model has two inputs: - encoder_out: a tensor of shape (N, joiner_dim) - decoder_out: a tensor of shape (N, joiner_dim) and produces one output: - logit: a tensor of shape (N, vocab_size) """ input_tensor = torch.rand((2, 80, 100), dtype=torch.float32) torch.onnx.export( model, (input_tensor,), model_filename, verbose=False, opset_version=opset_version, input_names=[ "features", ], output_names=["audio"], dynamic_axes={ "features": {0: "N", 2: "F"}, "audio": {0: "N", 1: "T"}, }, ) meta_data = { "model_type": "Vocos", "version": "1", "model_author": "k2-fsa", "comment": "ConvNext Vocos", } logging.info(f"meta_data: {meta_data}") add_meta_data(filename=model_filename, meta_data=meta_data) @torch.no_grad() def main(): args = get_parser().parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) device = torch.device("cpu") params.device = device logging.info(params) logging.info("About to create model") model = get_model(params) model.to(device) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.eval() vocos = model.generator if params.iter > 0: suffix = f"iter-{params.iter}" else: suffix = f"epoch-{params.epoch}" suffix += f"-avg-{params.avg}" opset_version = 13 logging.info("Exporting model") model_filename = params.exp_dir / f"vocos-{suffix}.onnx" export_model_onnx( vocos, model_filename, opset_version=opset_version, ) logging.info(f"Exported vocos generator to {model_filename}") if params.fp16: logging.info("Generate fp16 models") model = onnx.load(model_filename) model_fp16 = float16.convert_float_to_float16(model, keep_io_types=True) model_filename_fp16 = params.exp_dir / f"vocos-{suffix}.fp16.onnx" onnx.save(model_fp16, model_filename_fp16) # Generate int8 quantization models # See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection logging.info("Generate int8 quantization models") model_filename_int8 = params.exp_dir / f"vocos-{suffix}.int8.onnx" quantize_dynamic( model_input=model_filename, model_output=model_filename_int8, op_types_to_quantize=["MatMul"], weight_type=QuantType.QInt8, ) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()