#!/usr/bin/env python3 # # Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import sentencepiece as spm import torch import torch.nn as nn from asr_datamodule import LibriSpeechAsrDataModule from transducer.beam_search import greedy_search from transducer.conformer import Conformer from transducer.decoder import Decoder from transducer.joiner import Joiner from transducer.model import Transducer from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.env import get_env_info from icefall.utils import ( AttributeDict, setup_logger, store_transcripts, write_error_stats, ) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=77, help="It specifies the checkpoint to use for decoding." "Note: Epoch counts from 0.", ) parser.add_argument( "--avg", type=int, default=55, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", ) parser.add_argument( "--exp-dir", type=str, default="transducer/exp", help="The experiment dir", ) parser.add_argument( "--bpe-model", type=str, default="data/lang_bpe_500/bpe.model", help="Path to the BPE model", ) return parser def get_params() -> AttributeDict: params = AttributeDict( { # parameters for conformer "feature_dim": 80, "encoder_out_dim": 512, "subsampling_factor": 4, "attention_dim": 512, "nhead": 8, "dim_feedforward": 2048, "num_encoder_layers": 12, "vgg_frontend": False, "use_feat_batchnorm": True, # decoder params "decoder_embedding_dim": 1024, "num_decoder_layers": 4, "decoder_hidden_dim": 512, "env_info": get_env_info(), } ) return params def get_encoder_model(params: AttributeDict): # TODO: We can add an option to switch between Conformer and Transformer encoder = Conformer( num_features=params.feature_dim, output_dim=params.encoder_out_dim, subsampling_factor=params.subsampling_factor, d_model=params.attention_dim, nhead=params.nhead, dim_feedforward=params.dim_feedforward, num_encoder_layers=params.num_encoder_layers, vgg_frontend=params.vgg_frontend, use_feat_batchnorm=params.use_feat_batchnorm, ) return encoder def get_decoder_model(params: AttributeDict): decoder = Decoder( vocab_size=params.vocab_size, embedding_dim=params.decoder_embedding_dim, blank_id=params.blank_id, sos_id=params.sos_id, num_layers=params.num_decoder_layers, hidden_dim=params.decoder_hidden_dim, output_dim=params.encoder_out_dim, ) return decoder def get_joiner_model(params: AttributeDict): joiner = Joiner( input_dim=params.encoder_out_dim, output_dim=params.vocab_size, ) return joiner def get_transducer_model(params: AttributeDict): encoder = get_encoder_model(params) decoder = get_decoder_model(params) joiner = get_joiner_model(params) model = Transducer( encoder=encoder, decoder=decoder, joiner=joiner, ) return model def decode_one_batch( params: AttributeDict, model: nn.Module, sp: spm.SentencePieceProcessor, batch: dict, ) -> Dict[str, List[List[str]]]: """Decode one batch and return the result in a dict. The dict has the following format: - key: It indicates the setting used for decoding. For example, if greedy_search is used, it would be "greedy_search" If beam search with a beam size of 7 is used, it would be "beam_7" - value: It contains the decoding result. `len(value)` equals to batch size. `value[i]` is the decoding result for the i-th utterance in the given batch. Args: params: It's the return value of :func:`get_params`. model: The neural model. sp: The BPE model. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. Returns: Return the decoding result. See above description for the format of the returned dict. """ device = model.device feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) # at entry, feature is (N, T, C) supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) encoder_out, encoder_out_lens = model.encoder( x=feature, x_lens=feature_lens ) hyps = [] batch_size = encoder_out.size(0) for i in range(batch_size): # fmt: off encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] # fmt: on hyp = greedy_search(model=model, encoder_out=encoder_out_i) hyps.append(sp.decode(hyp).split()) return {"greedy_search": hyps} # TODO: Implement beam search def decode_dataset( dl: torch.utils.data.DataLoader, params: AttributeDict, model: nn.Module, sp: spm.SentencePieceProcessor, ) -> Dict[str, List[Tuple[List[str], List[str]]]]: """Decode dataset. Args: dl: PyTorch's dataloader containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. sp: The BPE model. Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ num_cuts = 0 try: num_batches = len(dl) except TypeError: num_batches = "?" results = defaultdict(list) for batch_idx, batch in enumerate(dl): texts = batch["supervisions"]["text"] hyps_dict = decode_one_batch( params=params, model=model, sp=sp, batch=batch, ) for name, hyps in hyps_dict.items(): this_batch = [] assert len(hyps) == len(texts) for hyp_words, ref_text in zip(hyps, texts): ref_words = ref_text.split() this_batch.append((ref_words, hyp_words)) results[name].extend(this_batch) num_cuts += len(texts) if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" logging.info( f"batch {batch_str}, cuts processed until now is {num_cuts}" ) return results def save_results( params: AttributeDict, test_set_name: str, results_dict: Dict[str, List[Tuple[List[int], List[int]]]], ): test_set_wers = dict() for key, results in results_dict.items(): recog_path = ( params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" ) store_transcripts(filename=recog_path, texts=results) logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = ( params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results, enable_log=True ) test_set_wers[key] = wer logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) s = "\nFor {}, WER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) note = "" logging.info(s) @torch.no_grad() def main(): parser = get_parser() LibriSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) params.res_dir = params.exp_dir / "greedy_search" params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") logging.info("Decoding started") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"Device: {device}") sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) # and are defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.sos_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() logging.info(params) logging.info("About to create model") model = get_transducer_model(params) if params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if start >= 0: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) model.to(device) model.eval() model.device = device num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") librispeech = LibriSpeechAsrDataModule(args) test_clean_cuts = librispeech.test_clean_cuts() test_other_cuts = librispeech.test_other_cuts() test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) test_other_dl = librispeech.test_dataloaders(test_other_cuts) test_sets = ["test-clean", "test-other"] test_dl = [test_clean_dl, test_other_dl] for test_set, test_dl in zip(test_sets, test_dl): results_dict = decode_dataset( dl=test_dl, params=params, model=model, sp=sp, ) save_results( params=params, test_set_name=test_set, results_dict=results_dict, ) logging.info("Done!") torch.set_num_threads(1) torch.set_num_interop_threads(1) if __name__ == "__main__": main()