#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=0 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/tedlium3 # You can find data, doc, legacy, LM, etc, inside it. # You can download them from https://www.openslr.org/51 # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 5000 2000 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/tedlium3, # you can create a symlink # # ln -sfv /path/to/tedlium3 $dl_dir/tedlium3 # if [ ! -d $dl_dir/tedlium3 ]; then lhotse download tedlium $dl_dir mv $dl_dir/TEDLIUM_release-3 $dl_dir/tedlium3 fi # Download big and small 4 gram lanuage models if [ ! -d $dl_dir/lm ]; then wget --continue http://kaldi-asr.org/models/5/4gram_small.arpa.gz -P $dl_dir/lm wget --continue http://kaldi-asr.org/models/5/4gram_big.arpa.gz -P $dl_dir/lm gzip -d $dl_dir/lm/4gram_small.arpa.gz $dl_dir/lm/4gram_big.arpa.gz fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # #ln -sfv /path/to/musan $dl_dir/musan if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare tedlium3 manifests" if [ ! -f data/manifests/.tedlium3.done ]; then # We assume that you have downloaded the tedlium3 corpus # to $dl_dir/tedlium3 mkdir -p data/manifests lhotse prepare tedlium $dl_dir/tedlium3 data/manifests touch data/manifests/.tedlium3.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifests" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -e data/manifests/.musan.done ]; then mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for tedlium3" if [ ! -e data/fbank/.tedlium3.done ]; then mkdir -p data/fbank python3 ./local/compute_fbank_tedlium.py gunzip -c data/fbank/tedlium_cuts_train.jsonl.gz | shuf | \ gzip -c > data/fbank/tedlium_cuts_train-shuf.jsonl.gz mv data/fbank/tedlium_cuts_train-shuf.jsonl.gz \ data/fbank/tedlium_cuts_train.jsonl.gz touch data/fbank/.tedlium3.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" if [ ! -e data/fbank/.musan.done ]; then mkdir -p data/fbank python3 ./local/compute_fbank_musan.py touch data/fbank/.musan.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare BPE train data and set of words" lang_dir=data/lang mkdir -p $lang_dir if [ ! -f $lang_dir/train.txt ]; then gunzip -c $dl_dir/tedlium3/LM/*.en.gz | sed 's: <\/s>::g' > $lang_dir/train_orig.txt ./local/prepare_transcripts.py \ --input-text-path $lang_dir/train_orig.txt \ --output-text-path $lang_dir/train.txt fi if [ ! -f $lang_dir/words.txt ]; then awk '{print $1}' $dl_dir/tedlium3/TEDLIUM.152k.dic | sed 's:([0-9])::g' | sort | uniq > $lang_dir/words_orig.txt ./local/prepare_words.py --lang-dir $lang_dir fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang/words.txt $lang_dir ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript data/lang/train.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir --oov "" fi done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare G" # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_4_gram_small.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ --max-arpa-warnings=-1 \ $dl_dir/lm/4gram_small.arpa > data/lm/G_4_gram_small.fst.txt fi if [ ! -f data/lm/G_4_gram_big.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="data/lang/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ --max-arpa-warnings=-1 \ $dl_dir/lm/4gram_big.arpa > data/lm/G_4_gram_big.fst.txt fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Compile HLG" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} if [ ! -f $lang_dir/HLG.pt ]; then ./local/compile_hlg.py \ --lang-dir $lang_dir \ --lm G_4_gram_small fi done fi