#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/LibriSpeech # You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it. # You can download them from https://www.openslr.org/12 # # - $dl_dir/lm # This directory contains the following files downloaded from # http://www.openslr.org/resources/11 # # - 3-gram.pruned.1e-7.arpa.gz # - 3-gram.pruned.1e-7.arpa # - 4-gram.arpa.gz # - 4-gram.arpa # - librispeech-vocab.txt # - librispeech-lexicon.txt # - librispeech-lm-norm.txt.gz # otc_token="" feature_type="ssl" dl_dir=$PWD/download manifests_dir="data/manifests" feature_dir="data/${feature_type}" lang_dir="data/lang" lm_dir="data/lm" perturb_speed=false # ssl or fbank . ./cmd.sh . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 200 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: ${dl_dir}" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: Download LM" mkdir -p ${dl_dir}/lm if [ ! -e ${dl_dir}/lm/.done ]; then ./local/download_lm.py --out-dir=${dl_dir}/lm touch ${dl_dir}/lm/.done fi fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/LibriSpeech, # you can create a symlink # # ln -sfv /path/to/LibriSpeech $dl_dir/LibriSpeech # if [ ! -d $dl_dir/LibriSpeech/train-clean-100 ]; then lhotse download librispeech --full ${dl_dir} fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare LibriSpeech manifest" # We assume that you have downloaded the LibriSpeech corpus # to $dl_dir/LibriSpeech mkdir -p data/manifests if [ ! -e data/manifests/.librispeech.done ]; then lhotse prepare librispeech -j ${nj} \ -p dev-clean \ -p dev-other \ -p test-clean \ -p test-other \ -p train-clean-100 "${dl_dir}/LibriSpeech" "${manifests_dir}" touch data/manifests/.librispeech.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Compute ${feature_type} feature for librispeech (train-clean-100)" mkdir -p "${feature_dir}" if [ ! -e "${feature_dir}/.librispeech.done" ]; then if [ "${feature_type}" = ssl ]; then ./local/compute_ssl_librispeech.py elif [ "${feature_type}" = fbank ]; then ./local/compute_fbank_librispeech.py --perturb-speed ${perturb_speed} else log "Error: not supported --feature-type '${feature_type}'" exit 2 fi touch "${feature_dir}.librispeech.done" fi if [ ! -e "${feature_dir}/.librispeech-validated.done" ]; then log "Validating data/ssl for LibriSpeech" parts=( train-clean-100 test-clean test-other dev-clean dev-other ) for part in ${parts[@]}; do python3 ./local/validate_manifest.py \ "${feature_dir}/librispeech_cuts_${part}.jsonl.gz" done touch "${feature_dir}/.librispeech-validated.done" fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare words.txt" mkdir -p ${lang_dir} (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/librispeech-lexicon.txt | sort | uniq > ${lang_dir}/lexicon.txt local/get_words_from_lexicon.py \ --lang-dir ${lang_dir} \ --otc-token ${otc_token} fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do bpe_lang_dir="data/lang_bpe_${vocab_size}" mkdir -p "${bpe_lang_dir}" # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp "${lang_dir}/words.txt" "${bpe_lang_dir}" if [ ! -f "${bpe_lang_dir}/transcript_words.txt" ]; then log "Generate data for BPE training" files=$( find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt" find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt" find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt" ) for f in ${files[@]}; do cat $f | cut -d " " -f 2- done > "${bpe_lang_dir}/transcript_words.txt" fi if [ ! -f ${bpe_lang_dir}/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir ${bpe_lang_dir} \ --vocab-size ${vocab_size} \ --transcript ${bpe_lang_dir}/transcript_words.txt fi if [ ! -f ${bpe_lang_dir}/L_disambig.pt ]; then ./local/prepare_otc_lang_bpe.py \ --lang-dir "${bpe_lang_dir}" \ --otc-token "${otc_token}" log "Validating ${bpe_lang_dir}/lexicon.txt" ./local/validate_bpe_lexicon.py \ --lexicon ${bpe_lang_dir}/lexicon.txt \ --bpe-model ${bpe_lang_dir}/bpe.model \ --otc-token "${otc_token}" fi done fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare G" # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm mkdir -p "${lm_dir}" if [ ! -f ${lm_dir}/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="${lang_dir}/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ ${dl_dir}/lm/3-gram.pruned.1e-7.arpa > ${lm_dir}/G_3_gram.fst.txt fi if [ ! -f ${lm_dir}/G_4_gram.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="${lang_dir}/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ ${dl_dir}/lm/4-gram.arpa > ${lm_dir}/G_4_gram.fst.txt fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Compile HLG" # Note If ./local/compile_hlg.py throws OOM, # please switch to the following command # # ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do bpe_lang_dir="data/lang_bpe_${vocab_size}" echo "LM DIR: ${lm_dir}" ./local/compile_hlg.py \ --lm-dir "${lm_dir}" \ --lang-dir "${bpe_lang_dir}" done fi