# Modified from https://github.com/QwenLM/Qwen2.5-Omni/blob/main/web_demo.py import io import sys from argparse import ArgumentParser import gradio as gr import gradio.processing_utils as processing_utils import numpy as np import sherpa_onnx import soundfile as sf import torch import whisper #from cosyvoice.cli.cosyvoice import CosyVoice from gradio_client import utils as client_utils from model import SPEECH_LLM, EncoderProjector from peft import LoraConfig, get_peft_model from train import DEFAULT_SPEECH_TOKEN, add_model_arguments from transformers import AutoModelForCausalLM, AutoTokenizer, Qwen2Config from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward # https://github.com/FunAudioLLM/CosyVoice/tree/main/third_party sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS") def get_model(params, device="cuda"): """Load and prepare the speech-to-speech model.""" if params.remove_whisper_encoder_input_length_restriction: replace_whisper_encoder_forward() whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu") speech_encoder = whisper_model.encoder speech_encoder_dim = whisper_model.dims.n_audio_state tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name) if params.use_flash_attn: attn_implementation = "flash_attention_2" else: attn_implementation = "eager" llm = AutoModelForCausalLM.from_pretrained( params.llm_path_or_name, attn_implementation=attn_implementation, torch_dtype=torch.float16, ) if params.use_lora: lora_config = LoraConfig( r=64, lora_alpha=16, target_modules=[ "q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj", ], task_type="CAUSAL_LM", ) llm = get_peft_model(llm, lora_config) llm.print_trainable_parameters() special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]} tokenizer.add_special_tokens(special_tokens_dict) llm.config.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>") llm.config.bos_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>") llm.config.eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>") llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids( DEFAULT_SPEECH_TOKEN ) encoder_projector = EncoderProjector( speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate ) # codec_vocab_size = 4096 + 4 codec_vocab_size = 6561 + 4 config = Qwen2Config( vocab_size=codec_vocab_size, hidden_size=1024, num_hidden_layers=12, num_attention_heads=16, num_key_value_heads=16, intermediate_size=2048, max_position_embeddings=4096, ) codec_lm = AutoModelForCausalLM.from_config( config=config, attn_implementation=attn_implementation, torch_dtype=torch.float16, ) codec_lm.resize_token_embeddings(codec_vocab_size) codec_lm.vocab_size = codec_vocab_size codec_lm.config.pad_token_id = codec_vocab_size - 1 codec_lm.config.eos_token_id = codec_vocab_size - 2 codec_lm.config.bos_token_id = codec_vocab_size - 3 codec_lm.config.mask_token_id = codec_vocab_size - 4 model = SPEECH_LLM( speech_encoder, llm, encoder_projector, codec_lm, codec_lm_padding_side="left" if params.use_flash_attn else "right", ) checkpoint = torch.load(f"{params.checkpoint_path}", map_location="cpu") model.load_state_dict(checkpoint, strict=False) model.to(device) model.eval() return model, tokenizer def audio_decode_cosyvoice(audio_tokens, codec_decoder): """ Generate audio from tokens with optional tone and prompt embedding. Args: audio_tokens (list): List of audio tokens to be processed. codec_decoder: Codec decoder for generating audio. Returns: torch.Tensor: Generated audio waveform. """ flow_embedding = codec_decoder.frontend.spk2info["中文女"]["embedding"] flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32) prompt_speech_feat = torch.zeros(1, 0, 80) tts_mel, _ = codec_decoder.model.flow.inference( token=audio_tokens.to(codec_decoder.model.device), token_len=torch.tensor([audio_tokens.shape[1]], dtype=torch.int32).to( codec_decoder.model.device ), prompt_token=flow_prompt_speech_token.to(codec_decoder.model.device), prompt_token_len=torch.tensor( [flow_prompt_speech_token.shape[1]], dtype=torch.int32 ).to(codec_decoder.model.device), prompt_feat=prompt_speech_feat.to(codec_decoder.model.device), prompt_feat_len=torch.tensor( [prompt_speech_feat.shape[1]], dtype=torch.int32 ).to(codec_decoder.model.device), embedding=flow_embedding.to(codec_decoder.model.device), flow_cache=torch.zeros(1, 80, 0, 2).to(codec_decoder.model.device), ) audio_hat, _ = codec_decoder.model.hift.inference( speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0) ) return audio_hat def preprocess( messages, tokenizer, ): """Preprocesses the data for supervised fine-tuning.""" texts = [] TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{''}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}" for i, msg in enumerate(messages): texts.append( tokenizer.apply_chat_template( msg, tokenize=True, add_generation_prompt=False, chat_template=TEMPLATE, padding="longest", truncation=False, ) ) max_len_texts = max([len(text) for text in texts]) if tokenizer.padding_side == "right": texts = [ text + [tokenizer.pad_token_id] * (max_len_texts - len(text)) for text in texts ] else: texts = [ [tokenizer.pad_token_id] * (max_len_texts - len(text)) + text for text in texts ] input_ids = torch.tensor(texts, dtype=torch.int) attention_mask = input_ids.ne(tokenizer.pad_token_id) return input_ids, attention_mask def _launch_demo(args, model, tokenizer, token2wav_model, asr_model): def format_history(history: list): messages = [] for item in history: if isinstance(item["content"], str): messages.append({"role": item["role"], "content": item["content"]}) return messages def decode( model, token2wav_model, tokenizer, feature, messages, ): """Decode one Returns: pass """ dtype = torch.float32 device = model.llm.device feature = feature.to(device, dtype=dtype) input_ids, attention_mask = preprocess([messages], tokenizer) generated_ids, audio_tokens = model.decode_with_speech_output( feature, input_ids.to(device, dtype=torch.long), attention_mask.to(device) ) hyps = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) yield {"type": "text", "data": hyps[0]} audio_tokens = [token for token in audio_tokens if token < 4096] audio_tokens = torch.tensor(audio_tokens, dtype=torch.int32).unsqueeze(0) audio_hat = audio_decode_cosyvoice(audio_tokens, token2wav_model) audio = audio_hat.squeeze(0).cpu().numpy() audio = np.array(audio * 32767).astype(np.int16) wav_io = io.BytesIO() sf.write(wav_io, audio, samplerate=22050, format="WAV") wav_io.seek(0) wav_bytes = wav_io.getvalue() audio_path = processing_utils.save_bytes_to_cache( wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE ) yield {"type": "audio", "data": audio_path} def media_predict(audio, history): # First yield yield ( None, # microphone history, # media_chatbot gr.update(visible=False), # submit_btn gr.update(visible=True), # stop_btn ) print(2333, history, audio) history.append({"role": "user", "content": (audio,)}) history.append({"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"}) history.append({"role": "assistant", "content": ""}) formatted_history = format_history( history=history ) # only keep string text format assert audio is not None audio_transcript = get_transcript( audio, asr_model, ) history[-2]["content"] = audio_transcript fbank = whisper.log_mel_spectrogram(audio, device=model.llm.device) fbank = fbank.unsqueeze(0) assert fbank.ndim == 3 for chunk in decode( model, token2wav_model, tokenizer, fbank, formatted_history ): if chunk["type"] == "text": history[-1]["content"] = chunk["data"] yield ( None, # microphone history, # media_chatbot gr.update(visible=False), # submit_btn gr.update(visible=True), # stop_btn ) if chunk["type"] == "audio": history.append( {"role": "assistant", "content": gr.Audio(chunk["data"])} ) # Final yield yield ( None, # microphone history, # media_chatbot gr.update(visible=True), # submit_btn gr.update(visible=False), # stop_btn ) with gr.Blocks() as demo: with gr.Tab("Online"): with gr.Row(): with gr.Column(scale=1): microphone = gr.Audio(sources=["microphone"], type="filepath") submit_btn = gr.Button("Submit", variant="primary") stop_btn = gr.Button("Stop", visible=False) clear_btn = gr.Button("Clear History") with gr.Column(scale=2): media_chatbot = gr.Chatbot(height=650, type="messages") def clear_history(): return [], gr.update(value=None) submit_event = submit_btn.click( fn=media_predict, inputs=[ microphone, media_chatbot, ], outputs=[microphone, media_chatbot, submit_btn, stop_btn], ) stop_btn.click( fn=lambda: (gr.update(visible=True), gr.update(visible=False)), inputs=None, outputs=[submit_btn, stop_btn], cancels=[submit_event], queue=False, ) clear_btn.click( fn=clear_history, inputs=None, outputs=[media_chatbot, microphone] ) demo.queue(default_concurrency_limit=100, max_size=100).launch( max_threads=100, ssr_mode=False, share=args.share, inbrowser=args.inbrowser, server_port=args.server_port, server_name=args.server_name, ) def _get_args(): parser = ArgumentParser() parser.add_argument( "--checkpoint-path", type=str, default=None, help="Checkpoint name or path, default to %(default)r", ) parser.add_argument( "--token2wav-path", type=str, default=None, help="Token2Wav path, default to %(default)r", ) parser.add_argument( "--asr-model-dir", type=str, default=None, help="ASR model dir, default to %(default)r", ) parser.add_argument( "--flash-attn2", action="store_true", default=False, help="Enable flash_attention_2 when loading the model.", ) parser.add_argument( "--share", action="store_true", default=False, help="Create a publicly shareable link for the interface.", ) parser.add_argument( "--inbrowser", action="store_true", default=False, help="Automatically launch the interface in a new tab on the default browser.", ) parser.add_argument( "--server-port", type=int, default=8001, help="Demo server port." ) parser.add_argument( "--server-name", type=str, default="127.0.0.1", help="Demo server name." ) add_model_arguments(parser) args = parser.parse_args() return args def read_wave(wave_filename: str): """ Args: wave_filename: Path to a wave file. It should be single channel and can be of type 32-bit floating point PCM. Its sample rate does not need to be 24kHz. Returns: Return a tuple containing: - A 1-D array of dtype np.float32 containing the samples, which are normalized to the range [-1, 1]. - Sample rate of the wave file. """ samples, sample_rate = sf.read(wave_filename, dtype="float32") assert ( samples.ndim == 1 ), f"Expected single channel, but got {samples.ndim} channels." samples_float32 = samples.astype(np.float32) return samples_float32, sample_rate def get_transcript(audio_path, recognizer): samples, sample_rate = read_wave(audio_path) s = recognizer.create_stream() s.accept_waveform(sample_rate, samples) recognizer.decode_streams([s]) return s.result.text if __name__ == "__main__": args = _get_args() model, tokenizer = get_model(args) token2wav = CosyVoice( args.token2wav_path, load_jit=False, load_trt=False, fp16=False ) asr_model = sherpa_onnx.OfflineRecognizer.from_paraformer( paraformer=f"{args.asr_model_dir}/model.int8.onnx", tokens=f"{args.asr_model_dir}/tokens.txt", num_threads=2, sample_rate=16000, feature_dim=80, decoding_method="greedy_search", debug=False, ) _launch_demo(args, model, tokenizer, token2wav, asr_model)