Export to ncnn

We support exporting both LSTM transducer models and ConvEmformer transducer models to ncnn.

We also provide https://github.com/k2-fsa/sherpa-ncnn performing speech recognition using ncnn with exported models. It has been tested on Linux, macOS, Windows, Android, and Raspberry Pi.

sherpa-ncnn is self-contained and can be statically linked to produce a binary containing everything needed. Please refer to its documentation for details:

Export LSTM transducer models

Please refer to Export LSTM transducer models for ncnn for details.

Export ConvEmformer transducer models

We use the pre-trained model from the following repository as an example:

We will show you step by step how to export it to ncnn and run it with sherpa-ncnn.

Hint

We use Ubuntu 18.04, torch 1.10, and Python 3.8 for testing.

Caution

Please use a more recent version of PyTorch. For instance, torch 1.8 may not work.

1. Download the pre-trained model

Hint

You can also refer to https://k2-fsa.github.io/sherpa/cpp/pretrained_models/online_transducer.html#icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05 to download the pre-trained model.

You have to install git-lfs before you continue.

cd egs/librispeech/ASR

GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05

git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
git lfs pull --include "data/lang_bpe_500/bpe.model"

cd ..

Note

We download exp/pretrained-xxx.pt, not exp/cpu-jit_xxx.pt.

In the above code, we download the pre-trained model into the directory egs/librispeech/ASR/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05.

2. Install ncnn and pnnx

# We put ncnn into $HOME/open-source/ncnn
# You can change it to anywhere you like

cd $HOME
mkdir -p open-source
cd open-source

git clone https://github.com/csukuangfj/ncnn
cd ncnn
git submodule update --recursive --init

# Note: We don't use "python setup.py install" or "pip install ." here

mkdir -p build-wheel
cd build-wheel

cmake \
  -DCMAKE_BUILD_TYPE=Release \
  -DNCNN_PYTHON=ON \
  -DNCNN_BUILD_BENCHMARK=OFF \
  -DNCNN_BUILD_EXAMPLES=OFF \
  -DNCNN_BUILD_TOOLS=ON \
..

make -j4

cd ..

# Note: $PWD here is $HOME/open-source/ncnn

export PYTHONPATH=$PWD/python:$PYTHONPATH
export PATH=$PWD/tools/pnnx/build/src:$PATH
export PATH=$PWD/build-wheel/tools/quantize:$PATH

# Now build pnnx
cd tools/pnnx
mkdir build
cd build
cmake ..
make -j4

./src/pnnx

Congratulations! You have successfully installed the following components:

  • pnxx, which is an executable located in $HOME/open-source/ncnn/tools/pnnx/build/src. We will use it to convert models exported by torch.jit.trace().

  • ncnn2int8, which is an executable located in $HOME/open-source/ncnn/build-wheel/tools/quantize. We will use it to quantize our models to int8.

  • ncnn.cpython-38-x86_64-linux-gnu.so, which is a Python module located in $HOME/open-source/ncnn/python/ncnn.

    Note

    I am using Python 3.8, so it is ncnn.cpython-38-x86_64-linux-gnu.so. If you use a different version, say, Python 3.9, the name would be ncnn.cpython-39-x86_64-linux-gnu.so.

    Also, if you are not using Linux, the file name would also be different. But that does not matter. As long as you can compile it, it should work.

We have set up PYTHONPATH so that you can use import ncnn in your Python code. We have also set up PATH so that you can use pnnx and ncnn2int8 later in your terminal.

Caution

Please don’t use https://github.com/tencent/ncnn. We have made some modifications to the offical ncnn.

We will synchronize https://github.com/csukuangfj/ncnn periodically with the official one.

3. Export the model via torch.jit.trace()

First, let us rename our pre-trained model:

cd egs/librispeech/ASR

cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp

ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-30.pt

cd ../..

Next, we use the following code to export our model:

dir=./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/

./conv_emformer_transducer_stateless2/export-for-ncnn.py \
  --exp-dir $dir/exp \
  --bpe-model $dir/data/lang_bpe_500/bpe.model \
  --epoch 30 \
  --avg 1 \
  --use-averaged-model 0 \
  \
  --num-encoder-layers 12 \
  --chunk-length 32 \
  --cnn-module-kernel 31 \
  --left-context-length 32 \
  --right-context-length 8 \
  --memory-size 32 \
  --encoder-dim 512

Hint

We have renamed our model to epoch-30.pt so that we can use --epoch 30. There is only one pre-trained model, so we use --avg 1 --use-averaged-model 0.

If you have trained a model by yourself and if you have all checkpoints available, please first use decode.py to tune --epoch --avg and select the best combination with with --use-averaged-model 1.

Note

You will see the following log output:

2023-01-11 12:15:38,677 INFO [export-for-ncnn.py:220] device: cpu
2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:229] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_v
alid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampl
ing_factor': 4, 'decoder_dim': 512, 'joiner_dim': 512, 'model_warm_step': 3000, 'env_info': {'k2-version': '1.23.2', 'k2-build-type':
'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a34171ed85605b0926eebbd0463d059431f4f74a', 'k2-git-date': 'Wed Dec 14 00:06:38 2022',
 'lhotse-version': '1.12.0.dev+missing.version.file', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': False, 'torch-cuda-vers
ion': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'fix-stateless3-train-2022-12-27', 'icefall-git-sha1': '530e8a1-dirty', '
icefall-git-date': 'Tue Dec 27 13:59:18 2022', 'icefall-path': '/star-fj/fangjun/open-source/icefall', 'k2-path': '/star-fj/fangjun/op
en-source/k2/k2/python/k2/__init__.py', 'lhotse-path': '/star-fj/fangjun/open-source/lhotse/lhotse/__init__.py', 'hostname': 'de-74279
-k2-train-3-1220120619-7695ff496b-s9n4w', 'IP address': '127.0.0.1'}, 'epoch': 30, 'iter': 0, 'avg': 1, 'exp_dir': PosixPath('icefa
ll-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp'), 'bpe_model': './icefall-asr-librispeech-conv-emformer-transdu
cer-stateless2-2022-07-05//data/lang_bpe_500/bpe.model', 'jit': False, 'context_size': 2, 'use_averaged_model': False, 'encoder_dim':
512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'cnn_module_kernel': 31, 'left_context_length': 32, 'chunk_length'
: 32, 'right_context_length': 8, 'memory_size': 32, 'blank_id': 0, 'vocab_size': 500}
2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:231] About to create model
2023-01-11 12:15:40,053 INFO [checkpoint.py:112] Loading checkpoint from icefall-asr-librispeech-conv-emformer-transducer-stateless2-2
022-07-05/exp/epoch-30.pt
2023-01-11 12:15:40,708 INFO [export-for-ncnn.py:315] Number of model parameters: 75490012
2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:318] Using torch.jit.trace()
2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:320] Exporting encoder
2023-01-11 12:15:41,682 INFO [export-for-ncnn.py:149] chunk_length: 32, right_context_length: 8

The log shows the model has 75490012 number of parameters, i.e., ~75 M.

ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt

-rw-r--r-- 1 kuangfangjun root 289M Jan 11 12:05 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt

You can see that the file size of the pre-trained model is 289 MB, which is roughly 4 x 75 M.

After running conv_emformer_transducer_stateless2/export-for-ncnn.py, we will get the following files:

ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*pnnx*

-rw-r--r-- 1 kuangfangjun root 1010K Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root  283M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root  3.0M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.pt

3. Export torchscript model via pnnx

Hint

Make sure you have set up the PATH environment variable. Otherwise, it will throw an error saying that pnnx could not be found.

Now, it’s time to export our models to ncnn via pnnx.

cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/

pnnx ./encoder_jit_trace-pnnx.pt
pnnx ./decoder_jit_trace-pnnx.pt
pnnx ./joiner_jit_trace-pnnx.pt

It will generate the following files:

ls -lh  icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*ncnn*{bin,param}

-rw-r--r-- 1 kuangfangjun root 503K Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root  437 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 142M Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root  79K Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 1.5M Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root  488 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param

There are two types of files:

  • param: It is a text file containing the model architectures. You can use a text editor to view its content.

  • bin: It is a binary file containing the model parameters.

We compare the file sizes of the models below before and after converting via pnnx:

File name

File size

encoder_jit_trace-pnnx.pt

283 MB

decoder_jit_trace-pnnx.pt

1010 KB

joiner_jit_trace-pnnx.pt

3.0 MB

encoder_jit_trace-pnnx.ncnn.bin

142 MB

decoder_jit_trace-pnnx.ncnn.bin

503 KB

joiner_jit_trace-pnnx.ncnn.bin

1.5 MB

You can see that the file size of the models after converting is about one half of the models before converting:

  • encoder: 283 MB vs 142 MB

  • decoder: 1010 KB vs 503 KB

  • joiner: 3.0 MB vs 1.5 MB

The reason is that by default pnnx converts float32 parameters to float16. A float32 parameter occupies 4 bytes, while it is 2 bytes for float16. Thus, it is twice smaller after conversion.

Hint

If you use pnnx ./encoder_jit_trace-pnnx.pt fp16=0, then pnnx won’t convert float32 to float16.

4. Test the exported models in icefall

Note

We assume you have set up the environment variable PYTHONPATH when building ncnn.

Now we have successfully converted our pre-trained model to ncnn format. The generated 6 files are what we need. You can use the following code to test the converted models:

./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \
  --tokens ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt \
  --encoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param \
  --encoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin \
  --decoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param \
  --decoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin \
  --joiner-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param \
  --joiner-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin \
  ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav

Hint

ncnn supports only batch size == 1, so streaming-ncnn-decode.py accepts only 1 wave file as input.

The output is given below:

2023-01-11 14:02:12,216 INFO [streaming-ncnn-decode.py:320] {'tokens': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt', 'encoder_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param', 'encoder_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin', 'decoder_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param', 'decoder_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin', 'joiner_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param', 'joiner_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin', 'sound_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav'}
T 51 32
2023-01-11 14:02:13,141 INFO [streaming-ncnn-decode.py:328] Constructing Fbank computer
2023-01-11 14:02:13,151 INFO [streaming-ncnn-decode.py:331] Reading sound files: ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
2023-01-11 14:02:13,176 INFO [streaming-ncnn-decode.py:336] torch.Size([106000])
2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:380] ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:381] AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS

Congratulations! You have successfully exported a model from PyTorch to ncnn!

5. Modify the exported encoder for sherpa-ncnn

In order to use the exported models in sherpa-ncnn, we have to modify encoder_jit_trace-pnnx.ncnn.param.

Let us have a look at the first few lines of encoder_jit_trace-pnnx.ncnn.param:

7767517
1060 1342
Input                    in0                      0 1 in0

Explanation of the above three lines:

  1. 7767517, it is a magic number and should not be changed.

  2. 1060 1342, the first number 1060 specifies the number of layers in this file, while 1342 specifies the number intermediate outputs of this file

  3. Input in0 0 1 in0, Input is the layer type of this layer; in0 is the layer name of this layer; 0 means this layer has no input; 1 means this layer has one output. in0 is the output name of this layer.

We need to add 1 extra line and the result looks like below:

7767517
1061 1342
SherpaMetaData           sherpa_meta_data1        0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512
Input                    in0                      0 1 in0

Explanation

  1. 7767517, it is still the same

  2. 1061 1342, we have added an extra layer, so we need to update 1060 to 1061. We don’t need to change 1342 since the newly added layer has no inputs and outputs.

  3. SherpaMetaData  sherpa_meta_data1  0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512 This line is newly added. Its explanation is given below:

    • SherpaMetaData is the type of this layer. Must be SherpaMetaData.

    • sherpa_meta_data1 is the name of this layer. Must be sherpa_meta_data1.

    • 0 0 means this layer has no inputs and output. Must be 0 0

    • 0=1, 0 is the key and 1 is the value. MUST be 0=1

    • 1=12, 1 is the key and 12 is the value of the parameter --num-encoder-layers that you provided when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

    • 2=32, 2 is the key and 32 is the value of the parameter --memory-size that you provided when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

    • 3=31, 3 is the key and 31 is the value of the parameter --cnn-module-kernel that you provided when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

    • 4=8, 4 is the key and 8 is the value of the parameter --left-context-length that you provided when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

    • 5=32, 5 is the key and 32 is the value of the parameter --chunk-length that you provided when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

    • 6=8, 6 is the key and 8 is the value of the parameter --right-context-length that you provided when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

    • 7=512, 7 is the key and 512 is the value of the parameter --encoder-dim that you provided when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

    For ease of reference, we list the key-value pairs that you need to add in the following table. If your model has a different setting, please change the values for SherpaMetaData accordingly. Otherwise, you will be SAD.

    key

    value

    0

    1 (fixed)

    1

    --num-encoder-layers

    2

    --memory-size

    3

    --cnn-module-kernel

    4

    --left-context-length

    5

    --chunk-length

    6

    --right-context-length

    7

    --encoder-dim

  4. Input in0 0 1 in0. No need to change it.

Caution

When you add a new layer SherpaMetaData, please remember to update the number of layers. In our case, update 1060 to 1061. Otherwise, you will be SAD later.

Hint

After adding the new layer SherpaMetaData, you cannot use this model with streaming-ncnn-decode.py anymore since SherpaMetaData is supported only in sherpa-ncnn.

Hint

ncnn is very flexible. You can add new layers to it just by text-editing the param file! You don’t need to change the bin file.

Now you can use this model in sherpa-ncnn. Please refer to the following documentation:

We have a list of pre-trained models that have been exported for sherpa-ncnn:

6. (Optional) int8 quantization with sherpa-ncnn

This step is optional.

In this step, we describe how to quantize our model with int8.

Change 3. Export torchscript model via pnnx to disable fp16 when using pnnx:

cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/

pnnx ./encoder_jit_trace-pnnx.pt fp16=0
pnnx ./decoder_jit_trace-pnnx.pt
pnnx ./joiner_jit_trace-pnnx.pt fp16=0

Note

We add fp16=0 when exporting the encoder and joiner. ncnn does not support quantizing the decoder model yet. We will update this documentation once ncnn supports it. (Maybe in this year, 2023).

TODO(fangjun): Finish it.

Have fun with sherpa-ncnn!