#!/usr/bin/env python3 # # Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, # Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: (1) greedy search ./lstm_transducer_stateless3/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./lstm_transducer_stateless3/exp \ --max-duration 600 \ --decoding-method greedy_search (2) beam search (not recommended) ./lstm_transducer_stateless3/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./lstm_transducer_stateless3/exp \ --max-duration 600 \ --decoding-method beam_search \ --beam-size 4 (3) modified beam search ./lstm_transducer_stateless3/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./lstm_transducer_stateless3/exp \ --max-duration 600 \ --decoding-method modified_beam_search \ --beam-size 4 (4) fast beam search ./lstm_transducer_stateless3/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./lstm_transducer_stateless3/exp \ --max-duration 600 \ --decoding-method fast_beam_search \ --beam 4 \ --max-contexts 4 \ --max-states 8 """ import argparse import logging import re from collections import defaultdict from pathlib import Path from typing import Dict, List, Optional, Tuple import k2 import sentencepiece as spm import torch import torch.nn as nn from asr_datamodule import TAL_CSASRAsrDataModule from beam_search import ( beam_search, fast_beam_search_one_best, greedy_search, greedy_search_batch, modified_beam_search, ) from lhotse.cut import Cut from local.text_normalize import text_normalize from train import add_model_arguments, get_params, get_transducer_model from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, setup_logger, store_transcripts, str2bool, write_error_stats, ) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=30, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=False, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--exp-dir", type=str, default="lstm_transducer_stateless3/exp", help="The experiment dir", ) parser.add_argument( "--lang-dir", type=str, default="data/lang_char", help="""The lang dir It contains language related input files such as "lexicon.txt" """, ) parser.add_argument( "--decoding-method", type=str, default="greedy_search", help="""Possible values are: - greedy_search - beam_search - modified_beam_search - fast_beam_search """, ) parser.add_argument( "--beam-size", type=int, default=4, help="""An integer indicating how many candidates we will keep for each frame. Used only when --decoding-method is beam_search or modified_beam_search.""", ) parser.add_argument( "--beam", type=float, default=4, help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--max-contexts", type=int, default=4, help="""Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--max-states", type=int, default=8, help="""Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", type=int, default=1, help="""Maximum number of symbols per frame. Used only when --decoding_method is greedy_search""", ) add_model_arguments(parser) return parser def decode_one_batch( params: AttributeDict, model: nn.Module, lexicon: Lexicon, batch: dict, decoding_graph: Optional[k2.Fsa] = None, sp: spm.SentencePieceProcessor = None, ) -> Dict[str, List[List[str]]]: """Decode one batch and return the result in a dict. The dict has the following format: - key: It indicates the setting used for decoding. For example, if greedy_search is used, it would be "greedy_search" If beam search with a beam size of 7 is used, it would be "beam_7" - value: It contains the decoding result. `len(value)` equals to batch size. `value[i]` is the decoding result for the i-th utterance in the given batch. Args: params: It's the return value of :func:`get_params`. model: The neural model. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. decoding_graph: The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used only when --decoding_method is fast_beam_search. Returns: Return the decoding result. See above description for the format of the returned dict. """ device = next(model.parameters()).device feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) # at entry, feature is (N, T, C) supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) encoder_out, encoder_out_lens, _ = model.encoder(x=feature, x_lens=feature_lens) hyps = [] zh_hyps = [] en_hyps = [] pattern = re.compile(r"([\u4e00-\u9fff])") en_letter = "[\u0041-\u005a|\u0061-\u007a]+" # English letters zh_char = "[\u4e00-\u9fa5]+" # Chinese chars if params.decoding_method == "fast_beam_search": hyp_tokens = fast_beam_search_one_best( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, ) for i in range(encoder_out.size(0)): hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]]) chars = pattern.split(hyp.upper()) chars_new = [] zh_text = [] en_text = [] for char in chars: if char != "": tokens = char.strip().split(" ") chars_new.extend(tokens) for token in tokens: zh_text.extend(re.findall(zh_char, token)) en_text.extend(re.findall(en_letter, token)) hyps.append(chars_new) zh_hyps.append(zh_text) en_hyps.append(en_text) elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, ) for i in range(encoder_out.size(0)): hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]]) chars = pattern.split(hyp.upper()) chars_new = [] zh_text = [] en_text = [] for char in chars: if char != "": tokens = char.strip().split(" ") chars_new.extend(tokens) for token in tokens: zh_text.extend(re.findall(zh_char, token)) en_text.extend(re.findall(en_letter, token)) hyps.append(chars_new) zh_hyps.append(zh_text) en_hyps.append(en_text) elif params.decoding_method == "modified_beam_search": hyp_tokens = modified_beam_search( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam_size, ) for i in range(encoder_out.size(0)): hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]]) chars = pattern.split(hyp.upper()) chars_new = [] zh_text = [] en_text = [] for char in chars: if char != "": tokens = char.strip().split(" ") chars_new.extend(tokens) for token in tokens: zh_text.extend(re.findall(zh_char, token)) en_text.extend(re.findall(en_letter, token)) hyps.append(chars_new) zh_hyps.append(zh_text) en_hyps.append(en_text) else: batch_size = encoder_out.size(0) for i in range(batch_size): # fmt: off encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] # fmt: on if params.decoding_method == "greedy_search": hyp = greedy_search( model=model, encoder_out=encoder_out_i, max_sym_per_frame=params.max_sym_per_frame, ) elif params.decoding_method == "beam_search": hyp = beam_search( model=model, encoder_out=encoder_out_i, beam=params.beam_size, ) else: raise ValueError( f"Unsupported decoding method: {params.decoding_method}" ) for i in range(encoder_out.size(0)): hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]]) chars = pattern.split(hyp.upper()) chars_new = [] zh_text = [] en_text = [] for char in chars: if char != "": tokens = char.strip().split(" ") chars_new.extend(tokens) for token in tokens: zh_text.extend(re.findall(zh_char, token)) en_text.extend(re.findall(en_letter, token)) hyps.append(chars_new) zh_hyps.append(zh_text) en_hyps.append(en_text) if params.decoding_method == "greedy_search": return {"greedy_search": (hyps, zh_hyps, en_hyps)} elif params.decoding_method == "fast_beam_search": return { ( f"beam_{params.beam}_" f"max_contexts_{params.max_contexts}_" f"max_states_{params.max_states}" ): (hyps, zh_hyps, en_hyps) } else: return {f"beam_size_{params.beam_size}": (hyps, zh_hyps, en_hyps)} def decode_dataset( dl: torch.utils.data.DataLoader, params: AttributeDict, model: nn.Module, lexicon: Lexicon, decoding_graph: Optional[k2.Fsa] = None, sp: spm.SentencePieceProcessor = None, ) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: """Decode dataset. Args: dl: PyTorch's dataloader containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. decoding_graph: The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used only when --decoding_method is fast_beam_search. Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ num_cuts = 0 try: num_batches = len(dl) except TypeError: num_batches = "?" if params.decoding_method == "greedy_search": log_interval = 50 else: log_interval = 20 results = defaultdict(list) zh_results = defaultdict(list) en_results = defaultdict(list) pattern = re.compile(r"([\u4e00-\u9fff])") en_letter = "[\u0041-\u005a|\u0061-\u007a]+" # English letters zh_char = "[\u4e00-\u9fa5]+" # Chinese chars for batch_idx, batch in enumerate(dl): texts = batch["supervisions"]["text"] cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] zh_texts = [] en_texts = [] for i in range(len(texts)): text = texts[i] chars = pattern.split(text.upper()) chars_new = [] zh_text = [] en_text = [] for char in chars: if char != "": tokens = char.strip().split(" ") chars_new.extend(tokens) for token in tokens: zh_text.extend(re.findall(zh_char, token)) en_text.extend(re.findall(en_letter, token)) zh_texts.append(zh_text) en_texts.append(en_text) texts[i] = chars_new hyps_dict = decode_one_batch( params=params, model=model, lexicon=lexicon, decoding_graph=decoding_graph, batch=batch, sp=sp, ) for name, hyps_texts in hyps_dict.items(): this_batch = [] this_batch_zh = [] this_batch_en = [] # print(hyps_texts) hyps, zh_hyps, en_hyps = hyps_texts assert len(hyps) == len(texts) for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): this_batch.append((cut_id, ref_text, hyp_words)) for cut_id, hyp_words, ref_text in zip(cut_ids, zh_hyps, zh_texts): this_batch_zh.append((cut_id, ref_text, hyp_words)) for cut_id, hyp_words, ref_text in zip(cut_ids, en_hyps, en_texts): this_batch_en.append((cut_id, ref_text, hyp_words)) results[name].extend(this_batch) zh_results[name + "_zh"].extend(this_batch_zh) en_results[name + "_en"].extend(this_batch_en) num_cuts += len(texts) if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results, zh_results, en_results def save_results( params: AttributeDict, test_set_name: str, results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], ): test_set_wers = dict() for key, results in results_dict.items(): recog_path = ( params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" ) results = sorted(results) store_transcripts(filename=recog_path, texts=results) logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = ( params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results, enable_log=True ) test_set_wers[key] = wer logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) s = "\nFor {}, WER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) note = "" logging.info(s) @torch.no_grad() def main(): parser = get_parser() TAL_CSASRAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) assert params.decoding_method in ( "greedy_search", "beam_search", "fast_beam_search", "modified_beam_search", ) params.res_dir = params.exp_dir / params.decoding_method if params.iter > 0: params.suffix = f"iter-{params.iter}-avg-{params.avg}" else: params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" if "fast_beam_search" in params.decoding_method: params.suffix += f"-beam-{params.beam}" params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" if params.use_averaged_model: params.suffix += "-use-averaged-model" setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") logging.info("Decoding started") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"Device: {device}") bpe_model = params.lang_dir + "/bpe.model" sp = spm.SentencePieceProcessor() sp.load(bpe_model) lexicon = Lexicon(params.lang_dir) params.blank_id = lexicon.token_table[""] params.vocab_size = max(lexicon.tokens) + 1 logging.info(params) logging.info("About to create model") model = get_transducer_model(params) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.to(device) model.eval() if params.decoding_method == "fast_beam_search": decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") def text_normalize_for_cut(c: Cut): # Text normalize for each sample text = c.supervisions[0].text text = text.strip("\n").strip("\t") c.supervisions[0].text = text_normalize(text) return c # we need cut ids to display recognition results. args.return_cuts = True tal_csasr = TAL_CSASRAsrDataModule(args) dev_cuts = tal_csasr.valid_cuts() dev_cuts = dev_cuts.map(text_normalize_for_cut) dev_dl = tal_csasr.valid_dataloaders(dev_cuts) test_cuts = tal_csasr.test_cuts() test_cuts = test_cuts.map(text_normalize_for_cut) test_dl = tal_csasr.test_dataloaders(test_cuts) test_sets = ["dev", "test"] test_dl = [dev_dl, test_dl] for test_set, test_dl in zip(test_sets, test_dl): results_dict, zh_results_dict, en_results_dict = decode_dataset( dl=test_dl, params=params, model=model, lexicon=lexicon, decoding_graph=decoding_graph, sp=sp, ) save_results( params=params, test_set_name=test_set, results_dict=results_dict, ) save_results( params=params, test_set_name=test_set, results_dict=zh_results_dict, ) save_results( params=params, test_set_name=test_set, results_dict=en_results_dict, ) logging.info("Done!") if __name__ == "__main__": main()