#!/usr/bin/env bash set -eou pipefail stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/GRID # You can find lip, audio, align_text inside it. # # - $dl_dir/lm # This directory contains the language model(LM) downloaded from # https://huggingface.co/luomingshuang/grid_lm. # About how to get these LM files, you can know it # from https://github.com/luomingshuang/Train_LM_with_kaldilm. # # - lm_3_gram.arpa # - lm_4_gram.arpa # dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: Download LM" # We assume that you have installed the git-lfs, if not, you could install it # using: `sudo apt-get install git-lfs && git-lfs install` #[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm #git clone https://huggingface.co/luomingshuang/grid_lm $dl_dir/lm #cd $dl_dir/lm && git lfs pull # You can also use the following commands to download the lm files wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_3_gram.arpa wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_4_gram.arpa # Because the texts among the samples in GRID are very similar, # the lm_4_gram.arpa is nearly no use for decoding when use LM. fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # The process of extracting lip region takes much time. # Here, we provide the processed data (lip region) for using. # So you can run this recipe quickly and easily. # # If you want to know more details about getting lip region, # You can have a look at https://github.com/Fengdalu/LipNet-PyTorch/tree/master/scripts [ ! -e $dl_dir/GRID ] && mkdir -p $dl_dir/GRID # Download the GRID lip region data and text # You can use the following commands to download the processed lip region data and text wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.00 wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.01 wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.02 wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.03 wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.04 cat $dl_dir/GRID/GRID_LIP_160x80_TXT.zip.* > $dl_dir/GRID/GRID_LIP_160x80_TXT.zip unzip $dl_dir/GRID/GRID_LIP_160x80_TXT.zip -d $dl_dir/GRID/ rm -rf $dl_dir/GRID/GRID_LIP_160x80_TXT.zip # Download the GRID audio data wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_audio/resolve/main/audio_25k.zip unzip $dl_dir/GRID/audio_25k.zip -d $dl_dir/GRID/ rm -rf $dl_dir/GRID/audio_25k.zip # Download the spliting files for train and val # Here, we just consider the unseen case, which means # that there is no common speakers among train and val. wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_text/resolve/main/unseen_train.txt wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_text/resolve/main/unseen_val.txt fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare character-based lang" lang_dir=data/lang_character mkdir -p $lang_dir ./local/prepare_lexicon.py \ --samples-txt $dl_dir/GRID/unseen_train.txt \ --align-dir $dl_dir/GRID/GRID_align_txt \ --lang-dir $lang_dir if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare G" # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_character/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $dl_dir/lm/lm_3_gram.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="data/lang_character/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ $dl_dir/lm/lm_4_gram.arpa > data/lm/G_4_gram.fst.txt fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_character fi