#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script takes as input dir "download/GRID/GRID_align_txt" consisting of all samples' text files and does the following: 1. Generate lexicon.txt. 2. Generate train.text. """ import argparse import logging from pathlib import Path def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--samples-txt", type=str, help="""The file listing training samples. """, ) parser.add_argument( "--align-dir", type=str, help="""The directory including training samples' text files. """, ) parser.add_argument( "--lang-dir", type=str, help="""Output directory. """, ) return parser.parse_args() def prepare_lexicon( train_samples_txt: str, train_align_dir: str, lang_dir: str ): """ Args: train_samples_txt: The file listing training samples, e.g., download/GRID/unseen_train.txt. train_align_dir: The directory including training samples' text files, e.g., download/GRID/GRID_align_txt. lang_dir: Output directory, e.g., data/lang_character Return: The lexicon.txt file and the train.text in lang_dir. """ words = set() train_text = Path(lang_dir) / "train.text" lexicon = Path(lang_dir) / "lexicon.txt" if train_text.exists() is False: texts = [] train_samples_txts = [] with open(train_samples_txt, "r") as f: train_samples_txts = [line.strip() for line in f.readlines()] for sample_txt in train_samples_txts: anno = sample_txt.replace("video/mpg_6000", "align") + ".align" anno = Path(train_align_dir) / anno with open(anno, "r") as f: lines = [line.strip().split(" ") for line in f.readlines()] txt = [line[2] for line in lines] txt = list( filter(lambda s: not s.upper() in ["SIL", "SP"], txt) ) txt = " ".join(txt) texts.append(txt.upper()) with open(train_text, "w") as f: for txt in texts: f.write(txt) f.write("\n") with open(train_text, "r") as load_f: lines = load_f.readlines() for line in lines: words_list = list(filter(None, line.rstrip("\n").split(" "))) for word in words_list: if word not in words: words.add(word) with open(lexicon, "w") as f: for word in words: chars = list(word) char_str = " ".join(chars) f.write((word + " " + char_str).upper()) f.write("\n") f.write(" ") f.write("\n") def main(): args = get_args() train_samples_txt = Path(args.samples_txt) train_align_dir = Path(args.align_dir) lang_dir = Path(args.lang_dir) logging.info("Generating lexicon.txt and train.text") prepare_lexicon(train_samples_txt, train_align_dir, lang_dir) if __name__ == "__main__": formatter = ( "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" ) logging.basicConfig(format=formatter, level=logging.INFO) main()