#!/usr/bin/env bash # # Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang, # Yifan Yang) # # This script is the entry point to start model training # with multi-node multi-GPU. # # Read the usage instructions below for how to run this script. set -e # DDP related parameters master_addr= node_rank= num_nodes=4 master_port=12354 . shared/parse_options.sh function usage() { echo "Usage: " echo "" echo " $0 \\" echo " --master-addr \\" echo " --master-port \\" echo " --node-rank \\" echo " --num-nodes " echo "" echo " --master-addr The ip address of the master node." echo " --master-port The port of the master node." echo " --node-rank Rank of this node." echo " --num-nodes Number of nodes in DDP training." echo "" echo "Usage example:" echo "Suppose you want to use DDP with two machines:" echo " (1) Machine 1 has 4 GPUs. You want to use" echo " GPU 0, 1, and 3 for training" echo " IP of machine 1 is: 10.177.41.71" echo " (2) Machine 2 has 4 GPUs. You want to use" echo " GPU 0, 2, and 3 for training" echo " IP of machine 2 is: 10.177.41.72" echo "You want to select machine 1 as the master node and" echo "assume that the port 1234 is free on machine 1." echo "" echo "On machine 1, you run:" echo "" echo " export CUDA_VISIBLE_DEVICES=\"0,1,3\"" echo " ./run_multi_node_multi_gpu.sh --master-addr 10.177.41.71 --master-port 1234 --node-rank 0 --num-nodes 2" echo "" echo "On machine 2, you run:" echo "" echo " export CUDA_VISIBLE_DEVICES=\"0,2,3\"" echo " ./run_multi_node_multi_gpu.sh --master-addr 10.177.41.71 --master-port 1234 --node-rank 1 --num-nodes 2" echo "" echo "Note 1:" echo " You use CUDA_VISIBLE_DEVICES to decide which GPUs are used for training." echo "" echo "Note 2:" echo " If you use torch < 1.9.0, then every node has to use the same number of GPUs for training." echo " If you use torch >= 1.9.0, different nodes can have a different number of GPUs for training." exit 1 } default='\033[0m' bold='\033[1m' red='\033[31m' function error() { printf "${bold}${red}[ERROR]${default} $1\n" } [ ! -z $CUDA_VISIBLE_DEVICES ] || ( echo; error "Please set CUDA_VISIBLE_DEVICES"; echo; usage ) [ ! -z $master_addr ] || ( echo; error "Please set --master-addr"; echo; usage ) [ ! -z $master_port ] || ( echo; error "Please set --master-port"; echo; usage ) [ ! -z $node_rank ] || ( echo; error "Please set --node-rank"; echo; usage ) [ ! -z $num_nodes ] || ( echo; error "Please set --num-nodes"; echo; usage ) # Number of GPUs this node has num_gpus=$(python3 -c "s=\"$CUDA_VISIBLE_DEVICES\"; print(len(s.split(',')))") echo "CUDA_VISIBLE_DEVICES: $CUDA_VISIBLE_DEVICES" echo "num_gpus: $num_gpus" echo "master_addr: $master_addr" export MASTER_ADDR=$master_addr export MASTER_PORT=$master_port set -x torchrun \ --nproc_per_node $num_gpus \ --nnodes $num_nodes \ --node_rank $node_rank \ --master_addr $master_addr \ --master_port $master_port \ zipformer/pretrain.py \ --use-multi-node 1 \ --master-port $master_port \ --num-epochs 20 \ --start-epoch 1 \ --use-fp16 1 \ --exp-dir zipformer/exp_pretrain \ --max-duration 350 \ --quadratic-duration 1024 \ --accum-grad 1 \ --do-normalize 1 \ --mask-prob 0.8 \ --dropout-input 0.0 \ --dropout-features 0.0 \ --feature-grad-mult 1.0 \ --num-encoder-layers 2,2,4,5,4,2 \ --feedforward-dim 768,1536,2048,3072,2048,1536 \ --encoder-dim 256,512,768,1024,768,512 \ --encoder-unmasked-dim 256,256,256,320,256,256 \ --base-lr 0.045