# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file replaces various modules in a model. Specifically, ActivationBalancer is replaced with an identity operator; Whiten is also replaced with an identity operator; BasicNorm is replaced by a module with `exp` removed. """ import copy from typing import List, Tuple import torch import torch.nn as nn from scaling import ActivationBalancer, BasicNorm, Whiten from zipformer import PoolingModule class PoolingModuleNoProj(nn.Module): def forward( self, x: torch.Tensor, cached_len: torch.Tensor, cached_avg: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Args: x: A tensor of shape (T, N, C) cached_len: A tensor of shape (N,) cached_avg: A tensor of shape (N, C) Returns: Return a tuple containing: - new_x - new_cached_len - new_cached_avg """ x = x.cumsum(dim=0) # (T, N, C) x = x + (cached_avg * cached_len.unsqueeze(1)).unsqueeze(0) # Cumulated numbers of frames from start cum_mask = torch.arange(1, x.size(0) + 1, device=x.device) cum_mask = cum_mask.unsqueeze(1) + cached_len.unsqueeze(0) # (T, N) pooling_mask = (1.0 / cum_mask).unsqueeze(2) # now pooling_mask: (T, N, 1) x = x * pooling_mask # (T, N, C) cached_len = cached_len + x.size(0) cached_avg = x[-1] return x, cached_len, cached_avg class PoolingModuleWithProj(nn.Module): def __init__(self, proj: torch.nn.Module): super().__init__() self.proj = proj self.pooling = PoolingModuleNoProj() def forward( self, x: torch.Tensor, cached_len: torch.Tensor, cached_avg: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Args: x: A tensor of shape (T, N, C) cached_len: A tensor of shape (N,) cached_avg: A tensor of shape (N, C) Returns: Return a tuple containing: - new_x - new_cached_len - new_cached_avg """ x, cached_len, cached_avg = self.pooling(x, cached_len, cached_avg) return self.proj(x), cached_len, cached_avg def streaming_forward( self, x: torch.Tensor, cached_len: torch.Tensor, cached_avg: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Args: x: A tensor of shape (T, N, C) cached_len: A tensor of shape (N,) cached_avg: A tensor of shape (N, C) Returns: Return a tuple containing: - new_x - new_cached_len - new_cached_avg """ x, cached_len, cached_avg = self.pooling(x, cached_len, cached_avg) return self.proj(x), cached_len, cached_avg class NonScaledNorm(nn.Module): """See BasicNorm for doc""" def __init__( self, num_channels: int, eps_exp: float, channel_dim: int = -1, # CAUTION: see documentation. ): super().__init__() self.num_channels = num_channels self.channel_dim = channel_dim self.eps_exp = eps_exp def forward(self, x: torch.Tensor) -> torch.Tensor: if not torch.jit.is_tracing(): assert x.shape[self.channel_dim] == self.num_channels scales = ( torch.mean(x * x, dim=self.channel_dim, keepdim=True) + self.eps_exp ).pow(-0.5) return x * scales def convert_basic_norm(basic_norm: BasicNorm) -> NonScaledNorm: assert isinstance(basic_norm, BasicNorm), type(basic_norm) norm = NonScaledNorm( num_channels=basic_norm.num_channels, eps_exp=basic_norm.eps.data.exp().item(), channel_dim=basic_norm.channel_dim, ) return norm def convert_pooling_module(pooling: PoolingModule) -> PoolingModuleWithProj: assert isinstance(pooling, PoolingModule), type(pooling) return PoolingModuleWithProj(proj=pooling.proj) # Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa # get_submodule was added to nn.Module at v1.9.0 def get_submodule(model, target): if target == "": return model atoms: List[str] = target.split(".") mod: torch.nn.Module = model for item in atoms: if not hasattr(mod, item): raise AttributeError( mod._get_name() + " has no " "attribute `" + item + "`" ) mod = getattr(mod, item) if not isinstance(mod, torch.nn.Module): raise AttributeError("`" + item + "` is not " "an nn.Module") return mod def convert_scaled_to_non_scaled( model: nn.Module, inplace: bool = False, is_pnnx: bool = False, ): """ Args: model: The model to be converted. inplace: If True, the input model is modified inplace. If False, the input model is copied and we modify the copied version. is_pnnx: True if we are going to export the model for PNNX. Return: Return a model without scaled layers. """ if not inplace: model = copy.deepcopy(model) d = {} for name, m in model.named_modules(): if isinstance(m, BasicNorm): d[name] = convert_basic_norm(m) elif isinstance(m, (ActivationBalancer, Whiten)): d[name] = nn.Identity() elif isinstance(m, PoolingModule) and is_pnnx: d[name] = convert_pooling_module(m) for k, v in d.items(): if "." in k: parent, child = k.rsplit(".", maxsplit=1) setattr(get_submodule(model, parent), child, v) else: setattr(model, k, v) return model