#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ To run this file, do: cd icefall/egs/librispeech/ASR python ./lstm_transducer_stateless/test_model.py """ import os from pathlib import Path import torch from export import ( export_decoder_model_jit_trace, export_encoder_model_jit_trace, export_joiner_model_jit_trace, ) from lstm import stack_states, unstack_states from scaling_converter import convert_scaled_to_non_scaled from train import get_params, get_transducer_model def test_model(): params = get_params() params.vocab_size = 500 params.blank_id = 0 params.context_size = 2 params.unk_id = 2 params.encoder_dim = 512 params.rnn_hidden_size = 1024 params.num_encoder_layers = 12 params.aux_layer_period = 0 params.exp_dir = Path("exp_test_model") model = get_transducer_model(params) model.eval() num_param = sum([p.numel() for p in model.parameters()]) print(f"Number of model parameters: {num_param}") convert_scaled_to_non_scaled(model, inplace=True) params.exp_dir.mkdir(exist_ok=True) encoder_filename = params.exp_dir / "encoder_jit_trace.pt" export_encoder_model_jit_trace(model.encoder, encoder_filename) decoder_filename = params.exp_dir / "decoder_jit_trace.pt" export_decoder_model_jit_trace(model.decoder, decoder_filename) joiner_filename = params.exp_dir / "joiner_jit_trace.pt" export_joiner_model_jit_trace(model.joiner, joiner_filename) print("The model has been successfully exported using jit.trace.") def test_states_stack_and_unstack(): layer, batch, hidden, cell = 12, 100, 512, 1024 states = ( torch.randn(layer, batch, hidden), torch.randn(layer, batch, cell), ) states2 = stack_states(unstack_states(states)) assert torch.allclose(states[0], states2[0]) assert torch.allclose(states[1], states2[1]) def main(): test_model() test_states_stack_and_unstack() if __name__ == "__main__": main()