#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, # Wei Kang # Mingshuang Luo) # Copyright 2021 (Pingfeng Luo) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: ./prepare.sh ./prepare_aidatatang_200zh.sh export CUDA_VISIBLE_DEVICES="0,1,2" ./transducer_stateless_modified-2/train.py \ --world-size 3 \ --num-epochs 90 \ --start-epoch 0 \ --exp-dir transducer_stateless_modified-2/exp-2 \ --max-duration 250 \ --lr-factor 2.0 \ --context-size 2 \ --modified-transducer-prob 0.25 \ --datatang-prob 0.2 """ import argparse import logging import random import warnings from pathlib import Path from shutil import copyfile from typing import Optional, Tuple import k2 import torch import torch.multiprocessing as mp import torch.nn as nn from aidatatang_200zh import AIDatatang200zh from aishell import AIShell from asr_datamodule import AsrDataModule from conformer import Conformer from decoder import Decoder from joiner import Joiner from lhotse import CutSet, load_manifest from lhotse.cut import Cut from lhotse.utils import fix_random_seed from model import Transducer from torch import Tensor from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.utils import clip_grad_norm_ from torch.utils.tensorboard import SummaryWriter from transformer import Noam from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler from icefall.checkpoint import load_checkpoint from icefall.checkpoint import save_checkpoint as save_checkpoint_impl from icefall.dist import cleanup_dist, setup_dist from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--world-size", type=int, default=1, help="Number of GPUs for DDP training.", ) parser.add_argument( "--master-port", type=int, default=12354, help="Master port to use for DDP training.", ) parser.add_argument( "--tensorboard", type=str2bool, default=True, help="Should various information be logged in tensorboard.", ) parser.add_argument( "--num-epochs", type=int, default=30, help="Number of epochs to train.", ) parser.add_argument( "--start-epoch", type=int, default=0, help="""Resume training from from this epoch. If it is positive, it will load checkpoint from transducer_stateless/exp/epoch-{start_epoch-1}.pt """, ) parser.add_argument( "--exp-dir", type=str, default="transducer_stateless_modified-2/exp", help="""The experiment dir. It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--lang-dir", type=str, default="data/lang_char", help="""The lang dir It contains language related input files such as "lexicon.txt" """, ) parser.add_argument( "--lr-factor", type=float, default=5.0, help="The lr_factor for Noam optimizer", ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", ) parser.add_argument( "--modified-transducer-prob", type=float, default=0.25, help="""The probability to use modified transducer loss. In modified transduer, it limits the maximum number of symbols per frame to 1. See also the option --max-sym-per-frame in transducer_stateless/decode.py """, ) parser.add_argument( "--datatang-prob", type=float, default=0.2, help="The probability to select a batch from the " "aidatatang_200zh dataset", ) return parser def get_params() -> AttributeDict: """Return a dict containing training parameters. All training related parameters that are not passed from the commandline are saved in the variable `params`. Commandline options are merged into `params` after they are parsed, so you can also access them via `params`. Explanation of options saved in `params`: - best_train_loss: Best training loss so far. It is used to select the model that has the lowest training loss. It is updated during the training. - best_valid_loss: Best validation loss so far. It is used to select the model that has the lowest validation loss. It is updated during the training. - best_train_epoch: It is the epoch that has the best training loss. - best_valid_epoch: It is the epoch that has the best validation loss. - batch_idx_train: Used to writing statistics to tensorboard. It contains number of batches trained so far across epochs. - log_interval: Print training loss if batch_idx % log_interval` is 0 - reset_interval: Reset statistics if batch_idx % reset_interval is 0 - valid_interval: Run validation if batch_idx % valid_interval is 0 - feature_dim: The model input dim. It has to match the one used in computing features. - subsampling_factor: The subsampling factor for the model. - attention_dim: Hidden dim for multi-head attention model. - num_decoder_layers: Number of decoder layer of transformer decoder. - warm_step: The warm_step for Noam optimizer. """ params = AttributeDict( { "best_train_loss": float("inf"), "best_valid_loss": float("inf"), "best_train_epoch": -1, "best_valid_epoch": -1, "batch_idx_train": 0, "log_interval": 50, "reset_interval": 200, "valid_interval": 800, # For the 100h subset, use 800 # parameters for conformer "feature_dim": 80, "encoder_out_dim": 512, "subsampling_factor": 4, "attention_dim": 512, "nhead": 8, "dim_feedforward": 2048, "num_encoder_layers": 12, "vgg_frontend": False, # parameters for Noam "warm_step": 80000, # For the 100h subset, use 8k "env_info": get_env_info(), } ) return params def get_encoder_model(params: AttributeDict) -> nn.Module: # TODO: We can add an option to switch between Conformer and Transformer encoder = Conformer( num_features=params.feature_dim, output_dim=params.encoder_out_dim, subsampling_factor=params.subsampling_factor, d_model=params.attention_dim, nhead=params.nhead, dim_feedforward=params.dim_feedforward, num_encoder_layers=params.num_encoder_layers, vgg_frontend=params.vgg_frontend, ) return encoder def get_decoder_model(params: AttributeDict) -> nn.Module: decoder = Decoder( vocab_size=params.vocab_size, embedding_dim=params.encoder_out_dim, blank_id=params.blank_id, context_size=params.context_size, ) return decoder def get_joiner_model(params: AttributeDict) -> nn.Module: joiner = Joiner( input_dim=params.encoder_out_dim, output_dim=params.vocab_size, ) return joiner def get_transducer_model(params: AttributeDict) -> nn.Module: encoder = get_encoder_model(params) decoder = get_decoder_model(params) joiner = get_joiner_model(params) decoder_datatang = get_decoder_model(params) joiner_datatang = get_joiner_model(params) model = Transducer( encoder=encoder, decoder=decoder, joiner=joiner, decoder_datatang=decoder_datatang, joiner_datatang=joiner_datatang, ) return model def load_checkpoint_if_available( params: AttributeDict, model: nn.Module, optimizer: Optional[torch.optim.Optimizer] = None, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, ) -> None: """Load checkpoint from file. If params.start_epoch is positive, it will load the checkpoint from `params.start_epoch - 1`. Otherwise, this function does nothing. Apart from loading state dict for `model`, `optimizer` and `scheduler`, it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, and `best_valid_loss` in `params`. Args: params: The return value of :func:`get_params`. model: The training model. optimizer: The optimizer that we are using. scheduler: The learning rate scheduler we are using. Returns: Return None. """ if params.start_epoch <= 0: return filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" saved_params = load_checkpoint( filename, model=model, optimizer=optimizer, scheduler=scheduler, ) keys = [ "best_train_epoch", "best_valid_epoch", "batch_idx_train", "best_train_loss", "best_valid_loss", ] for k in keys: params[k] = saved_params[k] return saved_params def save_checkpoint( params: AttributeDict, model: nn.Module, optimizer: Optional[torch.optim.Optimizer] = None, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, rank: int = 0, ) -> None: """Save model, optimizer, scheduler and training stats to file. Args: params: It is returned by :func:`get_params`. model: The training model. """ if rank != 0: return filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" save_checkpoint_impl( filename=filename, model=model, params=params, optimizer=optimizer, scheduler=scheduler, rank=rank, ) if params.best_train_epoch == params.cur_epoch: best_train_filename = params.exp_dir / "best-train-loss.pt" copyfile(src=filename, dst=best_train_filename) if params.best_valid_epoch == params.cur_epoch: best_valid_filename = params.exp_dir / "best-valid-loss.pt" copyfile(src=filename, dst=best_valid_filename) def is_aishell(c: Cut) -> bool: """Return True if this cut is from the AIShell dataset. Note: During data preparation, we set the custom field in the supervision segment of aidatatang_200zh to dict(origin='aidatatang_200zh') See ../local/process_aidatatang_200zh.py. """ return c.supervisions[0].custom is None def compute_loss( params: AttributeDict, model: nn.Module, graph_compiler: CharCtcTrainingGraphCompiler, batch: dict, is_training: bool, ) -> Tuple[Tensor, MetricsTracker]: """ Compute CTC loss given the model and its inputs. Args: params: Parameters for training. See :func:`get_params`. model: The model for training. It is an instance of Conformer in our case. batch: A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` for the content in it. is_training: True for training. False for validation. When it is True, this function enables autograd during computation; when it is False, it disables autograd. """ device = model.device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 feature = feature.to(device) supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) aishell = is_aishell(supervisions["cut"][0]) texts = batch["supervisions"]["text"] y = graph_compiler.texts_to_ids(texts) y = k2.RaggedTensor(y).to(device) with torch.set_grad_enabled(is_training): loss = model( x=feature, x_lens=feature_lens, y=y, aishell=aishell, modified_transducer_prob=params.modified_transducer_prob, ) assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") info["frames"] = ( (feature_lens // params.subsampling_factor).sum().item() ) # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() return loss, info def compute_validation_loss( params: AttributeDict, model: nn.Module, graph_compiler: CharCtcTrainingGraphCompiler, valid_dl: torch.utils.data.DataLoader, world_size: int = 1, ) -> MetricsTracker: """Run the validation process.""" model.eval() tot_loss = MetricsTracker() for batch_idx, batch in enumerate(valid_dl): loss, loss_info = compute_loss( params=params, model=model, graph_compiler=graph_compiler, batch=batch, is_training=False, ) assert loss.requires_grad is False tot_loss = tot_loss + loss_info if world_size > 1: tot_loss.reduce(loss.device) loss_value = tot_loss["loss"] / tot_loss["frames"] if loss_value < params.best_valid_loss: params.best_valid_epoch = params.cur_epoch params.best_valid_loss = loss_value return tot_loss def train_one_epoch( params: AttributeDict, model: nn.Module, optimizer: torch.optim.Optimizer, graph_compiler: CharCtcTrainingGraphCompiler, train_dl: torch.utils.data.DataLoader, datatang_train_dl: torch.utils.data.DataLoader, valid_dl: torch.utils.data.DataLoader, rng: random.Random, tb_writer: Optional[SummaryWriter] = None, world_size: int = 1, ) -> None: """Train the model for one epoch. The training loss from the mean of all frames is saved in `params.train_loss`. It runs the validation process every `params.valid_interval` batches. Args: params: It is returned by :func:`get_params`. model: The model for training. optimizer: The optimizer we are using. train_dl: Dataloader for the training dataset. datatang_train_dl: Dataloader for the aidatatang_200zh training dataset. valid_dl: Dataloader for the validation dataset. tb_writer: Writer to write log messages to tensorboard. world_size: Number of nodes in DDP training. If it is 1, DDP is disabled. """ model.train() aishell_tot_loss = MetricsTracker() datatang_tot_loss = MetricsTracker() tot_loss = MetricsTracker() # index 0: for LibriSpeech # index 1: for GigaSpeech # This sets the probabilities for choosing which datasets dl_weights = [1 - params.datatang_prob, params.datatang_prob] iter_aishell = iter(train_dl) iter_datatang = iter(datatang_train_dl) batch_idx = 0 while True: idx = rng.choices((0, 1), weights=dl_weights, k=1)[0] dl = iter_aishell if idx == 0 else iter_datatang try: batch = next(dl) except StopIteration: break batch_idx += 1 params.batch_idx_train += 1 batch_size = len(batch["supervisions"]["text"]) aishell = is_aishell(batch["supervisions"]["cut"][0]) loss, loss_info = compute_loss( params=params, model=model, graph_compiler=graph_compiler, batch=batch, is_training=True, ) # summary stats tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info if aishell: aishell_tot_loss = ( aishell_tot_loss * (1 - 1 / params.reset_interval) ) + loss_info prefix = "aishell" # for logging only else: datatang_tot_loss = ( datatang_tot_loss * (1 - 1 / params.reset_interval) ) + loss_info prefix = "datatang" # NOTE: We use reduction==sum and loss is computed over utterances # in the batch and there is no normalization to it so far. optimizer.zero_grad() loss.backward() clip_grad_norm_(model.parameters(), 5.0, 2.0) optimizer.step() if batch_idx % params.log_interval == 0: logging.info( f"Epoch {params.cur_epoch}, " f"batch {batch_idx}, {prefix}_loss[{loss_info}], " f"tot_loss[{tot_loss}], batch size: {batch_size}, " f"aishell_tot_loss[{aishell_tot_loss}], " f"datatang_tot_loss[{datatang_tot_loss}], " f"batch size: {batch_size}" ) if batch_idx % params.log_interval == 0: if tb_writer is not None: loss_info.write_summary( tb_writer, f"train/current_{prefix}_", params.batch_idx_train, ) tot_loss.write_summary( tb_writer, "train/tot_", params.batch_idx_train ) aishell_tot_loss.write_summary( tb_writer, "train/aishell_tot_", params.batch_idx_train ) datatang_tot_loss.write_summary( tb_writer, "train/datatang_tot_", params.batch_idx_train ) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") valid_info = compute_validation_loss( params=params, model=model, graph_compiler=graph_compiler, valid_dl=valid_dl, world_size=world_size, ) model.train() logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") if tb_writer is not None: valid_info.write_summary( tb_writer, "train/valid_", params.batch_idx_train ) loss_value = tot_loss["loss"] / tot_loss["frames"] params.train_loss = loss_value if params.train_loss < params.best_train_loss: params.best_train_epoch = params.cur_epoch params.best_train_loss = params.train_loss def filter_short_and_long_utterances(cuts: CutSet) -> CutSet: def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 12 seconds # # Caution: There is a reason to select 12.0 here. Please see # ../local/display_manifest_statistics.py # # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold return 1.0 <= c.duration <= 12.0 return cuts def run(rank, world_size, args): """ Args: rank: It is a value between 0 and `world_size-1`, which is passed automatically by `mp.spawn()` in :func:`main`. The node with rank 0 is responsible for saving checkpoint. world_size: Number of GPUs for DDP training. args: The return value of get_parser().parse_args() """ params = get_params() params.update(vars(args)) seed = 42 fix_random_seed(seed) rng = random.Random(seed) if world_size > 1: setup_dist(rank, world_size, params.master_port) setup_logger(f"{params.exp_dir}/log/log-train") logging.info("Training started") if args.tensorboard and rank == 0: tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") else: tb_writer = None device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", rank) logging.info(f"Device: {device}") lexicon = Lexicon(params.lang_dir) graph_compiler = CharCtcTrainingGraphCompiler( lexicon=lexicon, device=device, oov="", ) params.blank_id = 0 params.vocab_size = max(lexicon.tokens) + 1 logging.info(params) logging.info("About to create model") model = get_transducer_model(params) num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") checkpoints = load_checkpoint_if_available(params=params, model=model) model.to(device) if world_size > 1: logging.info("Using DDP") model = DDP(model, device_ids=[rank], find_unused_parameters=True) model.device = device optimizer = Noam( model.parameters(), model_size=params.attention_dim, factor=params.lr_factor, warm_step=params.warm_step, ) if checkpoints and "optimizer" in checkpoints: logging.info("Loading optimizer state dict") optimizer.load_state_dict(checkpoints["optimizer"]) aishell = AIShell(manifest_dir=args.manifest_dir) train_cuts = aishell.train_cuts() train_cuts = filter_short_and_long_utterances(train_cuts) datatang = AIDatatang200zh(manifest_dir=args.manifest_dir) train_datatang_cuts = datatang.train_cuts() train_datatang_cuts = filter_short_and_long_utterances(train_datatang_cuts) train_datatang_cuts = train_datatang_cuts.repeat(times=None) if args.enable_musan: cuts_musan = load_manifest( Path(args.manifest_dir) / "musan_cuts.jsonl.gz" ) else: cuts_musan = None asr_datamodule = AsrDataModule(args) train_dl = asr_datamodule.train_dataloaders( train_cuts, on_the_fly_feats=False, cuts_musan=cuts_musan, ) datatang_train_dl = asr_datamodule.train_dataloaders( train_datatang_cuts, on_the_fly_feats=False, cuts_musan=cuts_musan, ) valid_cuts = aishell.valid_cuts() valid_dl = asr_datamodule.valid_dataloaders(valid_cuts) for dl in [ train_dl, # datatang_train_dl ]: scan_pessimistic_batches_for_oom( model=model, train_dl=dl, optimizer=optimizer, graph_compiler=graph_compiler, params=params, ) for epoch in range(params.start_epoch, params.num_epochs): train_dl.sampler.set_epoch(epoch) datatang_train_dl.sampler.set_epoch(epoch) cur_lr = optimizer._rate if tb_writer is not None: tb_writer.add_scalar( "train/learning_rate", cur_lr, params.batch_idx_train ) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: logging.info("epoch {}, learning rate {}".format(epoch, cur_lr)) params.cur_epoch = epoch train_one_epoch( params=params, model=model, optimizer=optimizer, graph_compiler=graph_compiler, train_dl=train_dl, datatang_train_dl=datatang_train_dl, valid_dl=valid_dl, rng=rng, tb_writer=tb_writer, world_size=world_size, ) save_checkpoint( params=params, model=model, optimizer=optimizer, rank=rank, ) logging.info("Done!") if world_size > 1: torch.distributed.barrier() cleanup_dist() def scan_pessimistic_batches_for_oom( model: nn.Module, train_dl: torch.utils.data.DataLoader, optimizer: torch.optim.Optimizer, graph_compiler: CharCtcTrainingGraphCompiler, params: AttributeDict, ): from lhotse.dataset import find_pessimistic_batches logging.info( "Sanity check -- see if any of the batches in epoch 0 would cause OOM." ) batches, crit_values = find_pessimistic_batches(train_dl.sampler) for criterion, cuts in batches.items(): batch = train_dl.dataset[cuts] try: optimizer.zero_grad() loss, _ = compute_loss( params=params, model=model, graph_compiler=graph_compiler, batch=batch, is_training=True, ) loss.backward() clip_grad_norm_(model.parameters(), 5.0, 2.0) optimizer.step() except RuntimeError as e: if "CUDA out of memory" in str(e): logging.error( "Your GPU ran out of memory with the current " "max_duration setting. We recommend decreasing " "max_duration and trying again.\n" f"Failing criterion: {criterion} " f"(={crit_values[criterion]}) ..." ) raise def main(): parser = get_parser() AsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) args.lang_dir = Path(args.lang_dir) assert 0 <= args.datatang_prob < 1, args.datatang_prob world_size = args.world_size assert world_size >= 1 if world_size > 1: mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) else: run(rank=0, world_size=1, args=args) torch.set_num_threads(1) torch.set_num_interop_threads(1) if __name__ == "__main__": main()