## Results ### WenetSpeech char-based training results (Pruned Transducer 2) #### 2022-05-19 Using the codes from this PR https://github.com/k2-fsa/icefall/pull/349. When training with the L subset, the WERs are | | dev | test-net | test-meeting | comment | |------------------------------------|-------|----------|--------------|------------------------------------------| | greedy search | 7.80 | 8.75 | 13.49 | --epoch 10, --avg 2, --max-duration 100 | | modified beam search (beam size 4) | 7.76 | 8.71 | 13.41 | --epoch 10, --avg 2, --max-duration 100 | | fast beam search (set as default) | 7.94 | 8.74 | 13.80 | --epoch 10, --avg 2, --max-duration 1500 | The training command for reproducing is given below: ``` export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" ./pruned_transducer_stateless2/train.py \ --lang-dir data/lang_char \ --exp-dir pruned_transducer_stateless2/exp \ --world-size 8 \ --num-epochs 15 \ --start-epoch 0 \ --max-duration 180 \ --valid-interval 3000 \ --model-warm-step 3000 \ --save-every-n 8000 \ --training-subset L ``` The tensorboard training log can be found at https://tensorboard.dev/experiment/wM4ZUNtASRavJx79EOYYcg/#scalars The decoding command is: ``` epoch=10 avg=2 ## greedy search ./pruned_transducer_stateless2/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir ./pruned_transducer_stateless2/exp \ --lang-dir data/lang_char \ --max-duration 100 \ --decoding-method greedy_search ## modified beam search ./pruned_transducer_stateless2/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir ./pruned_transducer_stateless2/exp \ --lang-dir data/lang_char \ --max-duration 100 \ --decoding-method modified_beam_search \ --beam-size 4 ## fast beam search ./pruned_transducer_stateless2/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir ./pruned_transducer_stateless2/exp \ --lang-dir data/lang_char \ --max-duration 1500 \ --decoding-method fast_beam_search \ --beam 4 \ --max-contexts 4 \ --max-states 8 ``` When training with the M subset, the WERs are | | dev | test-net | test-meeting | comment | |------------------------------------|--------|-----------|---------------|-------------------------------------------| | greedy search | 10.40 | 11.31 | 19.64 | --epoch 29, --avg 11, --max-duration 100 | | modified beam search (beam size 4) | 9.85 | 11.04 | 18.20 | --epoch 29, --avg 11, --max-duration 100 | | fast beam search (set as default) | 10.18 | 11.10 | 19.32 | --epoch 29, --avg 11, --max-duration 1500 | When training with the S subset, the WERs are | | dev | test-net | test-meeting | comment | |------------------------------------|--------|-----------|---------------|-------------------------------------------| | greedy search | 19.92 | 25.20 | 35.35 | --epoch 29, --avg 24, --max-duration 100 | | modified beam search (beam size 4) | 18.62 | 23.88 | 33.80 | --epoch 29, --avg 24, --max-duration 100 | | fast beam search (set as default) | 19.31 | 24.41 | 34.87 | --epoch 29, --avg 24, --max-duration 1500 | A pre-trained model and decoding logs can be found at