VITS-LJSpeech
===============
This tutorial shows you how to train an VITS model
with the `LJSpeech `_ dataset.
.. note::
TTS related recipes require packages in ``requirements-tts.txt``.
.. note::
The VITS paper: `Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech `_
Install extra dependencies
--------------------------
.. code-block:: bash
pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html
pip install numba espnet_tts_frontend cython
Data preparation
----------------
.. code-block:: bash
$ cd egs/ljspeech/TTS
$ ./prepare.sh
To run stage 1 to stage 5, use
.. code-block:: bash
$ ./prepare.sh --stage 1 --stop_stage 5
Build Monotonic Alignment Search
--------------------------------
.. code-block:: bash
$ ./prepare.sh --stage -1 --stop_stage -1
or
.. code-block:: bash
$ cd vits/monotonic_align
$ python setup.py build_ext --inplace
$ cd ../../
Training
--------
.. code-block:: bash
$ export CUDA_VISIBLE_DEVICES="0,1,2,3"
$ ./vits/train.py \
--world-size 4 \
--num-epochs 1000 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir vits/exp \
--tokens data/tokens.txt \
--model-type high \
--max-duration 500
.. note::
You can adjust the hyper-parameters to control the size of the VITS model and
the training configurations. For more details, please run ``./vits/train.py --help``.
.. warning::
If you want a model that runs faster on CPU, please use ``--model-type low``
or ``--model-type medium``.
.. note::
The training can take a long time (usually a couple of days).
Training logs, checkpoints and tensorboard logs are saved in ``vits/exp``.
Inference
---------
The inference part uses checkpoints saved by the training part, so you have to run the
training part first. It will save the ground-truth and generated wavs to the directory
``vits/exp/infer/epoch-*/wav``, e.g., ``vits/exp/infer/epoch-1000/wav``.
.. code-block:: bash
$ export CUDA_VISIBLE_DEVICES="0"
$ ./vits/infer.py \
--epoch 1000 \
--exp-dir vits/exp \
--tokens data/tokens.txt \
--max-duration 500
.. note::
For more details, please run ``./vits/infer.py --help``.
Export models
-------------
Currently we only support ONNX model exporting. It will generate one file in the given ``exp-dir``:
``vits-epoch-*.onnx``.
.. code-block:: bash
$ ./vits/export-onnx.py \
--epoch 1000 \
--exp-dir vits/exp \
--tokens data/tokens.txt
You can test the exported ONNX model with:
.. code-block:: bash
$ ./vits/test_onnx.py \
--model-filename vits/exp/vits-epoch-1000.onnx \
--tokens data/tokens.txt
Download pretrained models
--------------------------
If you don't want to train from scratch, you can download the pretrained models
by visiting the following link:
- ``--model-type=high``: ``_
- ``--model-type=medium``: ``_
- ``--model-type=low``: ``_
Usage in sherpa-onnx
--------------------
The following describes how to test the exported ONNX model in `sherpa-onnx`_.
.. hint::
`sherpa-onnx`_ supports different programming languages, e.g., C++, C, Python,
Kotlin, Java, Swift, Go, C#, etc. It also supports Android and iOS.
We only describe how to use pre-built binaries from `sherpa-onnx`_ below.
Please refer to ``_
for more documentation.
Install sherpa-onnx
^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
pip install sherpa-onnx
To check that you have installed `sherpa-onnx`_ successfully, please run:
.. code-block:: bash
which sherpa-onnx-offline-tts
sherpa-onnx-offline-tts --help
Download lexicon files
^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
cd /tmp
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
tar xf espeak-ng-data.tar.bz2
Run sherpa-onnx
^^^^^^^^^^^^^^^
.. code-block:: bash
cd egs/ljspeech/TTS
sherpa-onnx-offline-tts \
--vits-model=vits/exp/vits-epoch-1000.onnx \
--vits-tokens=data/tokens.txt \
--vits-data-dir=/tmp/espeak-ng-data \
--num-threads=1 \
--output-filename=./high.wav \
"Ask not what your country can do for you; ask what you can do for your country."
.. hint::
You can also use ``sherpa-onnx-offline-tts-play`` to play the audio
as it is generating.
You should get a file ``high.wav`` after running the above command.
Congratulations! You have successfully trained and exported a text-to-speech
model and run it with `sherpa-onnx`_.