# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script converts several saved checkpoints # to a single one using model averaging. """ Usage for offline: ./pruned_transducer_stateless5/export.py \ --exp-dir ./pruned_transducer_stateless5/exp_L_offline \ --lang-dir data/lang_char \ --epoch 4 \ --avg 1 It will generate a file exp_dir/pretrained.pt for offline ASR. ./pruned_transducer_stateless5/export.py \ --exp-dir ./pruned_transducer_stateless5/exp_L_offline \ --lang-dir data/lang_char \ --epoch 4 \ --avg 1 \ --jit True It will generate a file exp_dir/cpu_jit.pt for offline ASR. Usage for streaming: ./pruned_transducer_stateless5/export.py \ --exp-dir ./pruned_transducer_stateless5/exp_L_streaming \ --lang-dir data/lang_char \ --epoch 7 \ --avg 1 It will generate a file exp_dir/pretrained.pt for streaming ASR. ./pruned_transducer_stateless5/export.py \ --exp-dir ./pruned_transducer_stateless5/exp_L_streaming \ --lang-dir data/lang_char \ --epoch 7 \ --avg 1 \ --jit True It will generate a file exp_dir/cpu_jit.pt for streaming ASR. To use the generated file with `pruned_transducer_stateless5/decode.py`, you can do: cd /path/to/exp_dir ln -s pretrained.pt epoch-9999.pt cd /path/to/egs/wenetspeech/ASR ./pruned_transducer_stateless5/decode.py \ --exp-dir ./pruned_transducer_stateless5/exp \ --epoch 4 \ --avg 1 \ --decoding-method greedy_search \ --max-duration 100 \ --lang-dir data/lang_char """ import argparse import logging from pathlib import Path import torch from scaling_converter import convert_scaled_to_non_scaled from train import add_model_arguments, get_params, get_transducer_model from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.lexicon import Lexicon from icefall.utils import str2bool def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=28, help="It specifies the checkpoint to use for decoding." "Note: Epoch counts from 0.", ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", ) parser.add_argument( "--exp-dir", type=str, default="pruned_transducer_stateless5/exp", help="""It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--lang-dir", type=str, default="data/lang_char", help="The lang dir", ) parser.add_argument( "--jit", type=str2bool, default=False, help="""True to save a model after applying torch.jit.script. """, ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) return parser def main(): args = get_parser().parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") lexicon = Lexicon(params.lang_dir) params.blank_id = 0 params.vocab_size = max(lexicon.tokens) + 1 logging.info(params) logging.info("About to create model") model = get_transducer_model(params) model.to(device) if params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if start >= 0: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) model.eval() model.to("cpu") model.eval() if params.jit: # We won't use the forward() method of the model in C++, so just ignore # it here. # Otherwise, one of its arguments is a ragged tensor and is not # torch scriptabe. convert_scaled_to_non_scaled(model, inplace=True) model.__class__.forward = torch.jit.ignore(model.__class__.forward) logging.info("Using torch.jit.script") model = torch.jit.script(model) filename = params.exp_dir / "cpu_jit.pt" model.save(str(filename)) logging.info(f"Saved to {filename}") else: logging.info("Not using torch.jit.script") # Save it using a format so that it can be loaded # by :func:`load_checkpoint` filename = params.exp_dir / "pretrained.pt" torch.save({"model": model.state_dict()}, str(filename)) logging.info(f"Saved to {filename}") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()