#!/usr/bin/env python3 # Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads a checkpoint and uses it to decode waves. You can generate the checkpoint with the following command: Note: This is a example for librispeech dataset, if you are using different dataset, you should change the argument values according to your dataset. - For non-streaming model: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 - For streaming model: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --causal 1 \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 Usage of this script: - For non-streaming model: (1) greedy search ./zipformer/pretrained.py \ --checkpoint ./zipformer/exp/pretrained.pt \ --tokens data/lang_bpe_500/tokens.txt \ --method greedy_search \ /path/to/foo.wav \ /path/to/bar.wav (2) modified beam search ./zipformer/pretrained.py \ --checkpoint ./zipformer/exp/pretrained.pt \ --tokens ./data/lang_bpe_500/tokens.txt \ --method modified_beam_search \ /path/to/foo.wav \ /path/to/bar.wav (3) fast beam search ./zipformer/pretrained.py \ --checkpoint ./zipformer/exp/pretrained.pt \ --tokens ./data/lang_bpe_500/tokens.txt \ --method fast_beam_search \ /path/to/foo.wav \ /path/to/bar.wav - For streaming model: (1) greedy search ./zipformer/pretrained.py \ --checkpoint ./zipformer/exp/pretrained.pt \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --tokens ./data/lang_bpe_500/tokens.txt \ --method greedy_search \ /path/to/foo.wav \ /path/to/bar.wav (2) modified beam search ./zipformer/pretrained.py \ --checkpoint ./zipformer/exp/pretrained.pt \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --tokens ./data/lang_bpe_500/tokens.txt \ --method modified_beam_search \ /path/to/foo.wav \ /path/to/bar.wav (3) fast beam search ./zipformer/pretrained.py \ --checkpoint ./zipformer/exp/pretrained.pt \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --tokens ./data/lang_bpe_500/tokens.txt \ --method fast_beam_search \ /path/to/foo.wav \ /path/to/bar.wav You can also use `./zipformer/exp/epoch-xx.pt`. Note: ./zipformer/exp/pretrained.pt is generated by ./zipformer/export.py """ import argparse import logging import math from typing import List import k2 import kaldifeat import torch import torchaudio from beam_search import ( fast_beam_search_one_best, greedy_search_batch, modified_beam_search, ) from export import num_tokens from torch.nn.utils.rnn import pad_sequence from train import add_model_arguments, get_model, get_params from icefall.utils import make_pad_mask def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--checkpoint", type=str, required=True, help="Path to the checkpoint. " "The checkpoint is assumed to be saved by " "icefall.checkpoint.save_checkpoint().", ) parser.add_argument( "--tokens", type=str, help="""Path to tokens.txt.""", ) parser.add_argument( "--method", type=str, default="greedy_search", help="""Possible values are: - greedy_search - modified_beam_search - fast_beam_search """, ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) parser.add_argument( "--beam-size", type=int, default=4, help="""An integer indicating how many candidates we will keep for each frame. Used only when --method is beam_search or modified_beam_search.""", ) parser.add_argument( "--beam", type=float, default=4, help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. Used only when --method is fast_beam_search""", ) parser.add_argument( "--max-contexts", type=int, default=4, help="""Used only when --method is fast_beam_search""", ) parser.add_argument( "--max-states", type=int, default=8, help="""Used only when --method is fast_beam_search""", ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", type=int, default=1, help="""Maximum number of symbols per frame. Used only when --method is greedy_search. """, ) add_model_arguments(parser) return parser def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0].contiguous()) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() params = get_params() params.update(vars(args)) token_table = k2.SymbolTable.from_file(params.tokens) params.blank_id = token_table[""] params.unk_id = token_table[""] params.vocab_size = num_tokens(token_table) + 1 logging.info(f"{params}") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") if params.causal: assert ( "," not in params.chunk_size ), "chunk_size should be one value in decoding." assert ( "," not in params.left_context_frames ), "left_context_frames should be one value in decoding." logging.info("Creating model") model = get_model(params) num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") checkpoint = torch.load(args.checkpoint, map_location="cpu") model.load_state_dict(checkpoint["model"], strict=False) model.to(device) model.eval() logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = device opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = params.sample_rate opts.mel_opts.num_bins = params.feature_dim fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {params.sound_files}") waves = read_sound_files( filenames=params.sound_files, expected_sample_rate=params.sample_rate ) waves = [w.to(device) for w in waves] logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) # model forward encoder_out, encoder_out_lens = model.forward_encoder(features, feature_lengths) hyps = [] msg = f"Using {params.method}" logging.info(msg) def token_ids_to_words(token_ids: List[int]) -> str: text = "" for i in token_ids: text += token_table[i] return text.replace("▁", " ").strip() if params.method == "fast_beam_search": decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) hyp_tokens = fast_beam_search_one_best( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, ) for hyp in hyp_tokens: hyps.append(token_ids_to_words(hyp)) elif params.method == "modified_beam_search": hyp_tokens = modified_beam_search( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam_size, ) for hyp in hyp_tokens: hyps.append(token_ids_to_words(hyp)) elif params.method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, ) for hyp in hyp_tokens: hyps.append(token_ids_to_words(hyp)) else: raise ValueError(f"Unsupported method: {params.method}") s = "\n" for filename, hyp in zip(params.sound_files, hyps): s += f"{filename}:\n{hyp}\n\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()