#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # """ This script loads ONNX models and uses them to decode waves. We use the pre-trained model from https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13 as an example to show how to use this file. 1. Please follow ./export-onnx-ctc.py to get the onnx model. 2. Run this file ./zipformer/onnx_pretrained_ctc.py \ --nn-model /path/to/model.onnx \ --tokens /path/to/data/lang_bpe_500/tokens.txt \ 1089-134686-0001.wav \ 1221-135766-0001.wav \ 1221-135766-0002.wav """ import argparse import logging import math from typing import List, Tuple import k2 import kaldifeat import onnxruntime as ort import torch import torchaudio from torch.nn.utils.rnn import pad_sequence def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--nn-model", type=str, required=True, help="Path to the onnx model. ", ) parser.add_argument( "--tokens", type=str, help="""Path to tokens.txt.""", ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) return parser class OnnxModel: def __init__( self, nn_model: str, ): session_opts = ort.SessionOptions() session_opts.inter_op_num_threads = 1 session_opts.intra_op_num_threads = 1 self.session_opts = session_opts self.init_model(nn_model) def init_model(self, nn_model: str): self.model = ort.InferenceSession( nn_model, sess_options=self.session_opts, providers=["CPUExecutionProvider"], ) meta = self.model.get_modelmeta().custom_metadata_map print(meta) def __call__( self, x: torch.Tensor, x_lens: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: x: A 3-D float tensor of shape (N, T, C) x_lens: A 1-D int64 tensor of shape (N,) Returns: Return a tuple containing: - A float tensor containing log_probs of shape (N, T, C) - A int64 tensor containing log_probs_len of shape (N) """ out = self.model.run( [ self.model.get_outputs()[0].name, self.model.get_outputs()[1].name, ], { self.model.get_inputs()[0].name: x.numpy(), self.model.get_inputs()[1].name: x_lens.numpy(), }, ) return torch.from_numpy(out[0]), torch.from_numpy(out[1]) def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0].contiguous()) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() logging.info(vars(args)) model = OnnxModel( nn_model=args.nn_model, ) logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = "cpu" opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = args.sample_rate opts.mel_opts.num_bins = 80 fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {args.sound_files}") waves = read_sound_files( filenames=args.sound_files, expected_sample_rate=args.sample_rate, ) logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence( features, batch_first=True, padding_value=math.log(1e-10), ) feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64) log_probs, log_probs_len = model(features, feature_lengths) token_table = k2.SymbolTable.from_file(args.tokens) def token_ids_to_words(token_ids: List[int]) -> str: text = "" for i in token_ids: text += token_table[i] return text.replace("▁", " ").strip() blank_id = 0 s = "\n" for i in range(log_probs.size(0)): # greedy search indexes = log_probs[i, : log_probs_len[i]].argmax(dim=-1) token_ids = torch.unique_consecutive(indexes) token_ids = token_ids[token_ids != blank_id] words = token_ids_to_words(token_ids.tolist()) s += f"{args.sound_files[i]}:\n{words}\n\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()