#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: ./transducer/pretrained.py \ --checkpoint ./transducer/exp/pretrained.pt \ --tokens data/lang_bpe_500/tokens.txt \ --method greedy_search \ /path/to/foo.wav \ /path/to/bar.wav \ You can also use `./transducer/exp/epoch-xx.pt`. Note: ./transducer/exp/pretrained.pt is generated by ./transducer/export.py """ import argparse import logging import math from typing import List import k2 import kaldifeat import torch import torchaudio from beam_search import beam_search, greedy_search from conformer import Conformer from decoder import Decoder from joiner import Joiner from model import Transducer from torch.nn.utils.rnn import pad_sequence from icefall.env import get_env_info from icefall.utils import AttributeDict, num_tokens def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--checkpoint", type=str, required=True, help="Path to the checkpoint. " "The checkpoint is assumed to be saved by " "icefall.checkpoint.save_checkpoint().", ) parser.add_argument( "--tokens", type=str, help="Path to tokens.txt.", ) parser.add_argument( "--method", type=str, default="greedy_search", help="""Possible values are: - greedy_search - beam_search """, ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--beam-size", type=int, default=5, help="Used only when --method is beam_search", ) return parser def get_params() -> AttributeDict: params = AttributeDict( { "sample_rate": 16000, # parameters for conformer "feature_dim": 80, "encoder_out_dim": 512, "subsampling_factor": 4, "attention_dim": 512, "nhead": 8, "dim_feedforward": 2048, "num_encoder_layers": 12, "vgg_frontend": False, # decoder params "decoder_embedding_dim": 1024, "num_decoder_layers": 2, "decoder_hidden_dim": 512, "env_info": get_env_info(), } ) return params def get_encoder_model(params: AttributeDict): encoder = Conformer( num_features=params.feature_dim, output_dim=params.encoder_out_dim, subsampling_factor=params.subsampling_factor, d_model=params.attention_dim, nhead=params.nhead, dim_feedforward=params.dim_feedforward, num_encoder_layers=params.num_encoder_layers, vgg_frontend=params.vgg_frontend, ) return encoder def get_decoder_model(params: AttributeDict): decoder = Decoder( vocab_size=params.vocab_size, embedding_dim=params.decoder_embedding_dim, blank_id=params.blank_id, num_layers=params.num_decoder_layers, hidden_dim=params.decoder_hidden_dim, output_dim=params.encoder_out_dim, ) return decoder def get_joiner_model(params: AttributeDict): joiner = Joiner( input_dim=params.encoder_out_dim, output_dim=params.vocab_size, ) return joiner def get_transducer_model(params: AttributeDict): encoder = get_encoder_model(params) decoder = get_decoder_model(params) joiner = get_joiner_model(params) model = Transducer( encoder=encoder, decoder=decoder, joiner=joiner, ) return model def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans def main(): parser = get_parser() args = parser.parse_args() params = get_params() params.update(vars(args)) # Load tokens.txt here token_table = k2.SymbolTable.from_file(params.tokens) # Load id of the token and the vocab size # is defined in local/train_bpe_model.py params.blank_id = token_table[""] params.unk_id = token_table[""] params.vocab_size = num_tokens(token_table) + 1 # +1 for logging.info(f"{params}") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") logging.info("Creating model") model = get_transducer_model(params) checkpoint = torch.load(args.checkpoint, map_location="cpu") model.load_state_dict(checkpoint["model"], strict=False) model.to(device) model.eval() model.device = device logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = device opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = params.sample_rate opts.mel_opts.num_bins = params.feature_dim fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {params.sound_files}") waves = read_sound_files( filenames=params.sound_files, expected_sample_rate=params.sample_rate ) waves = [w.to(device) for w in waves] logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) with torch.no_grad(): encoder_out, encoder_out_lens = model.encoder( x=features, x_lens=feature_lengths ) def token_ids_to_words(token_ids: List[int]) -> str: text = "" for i in token_ids: text += token_table[i] return text.replace("▁", " ").strip() num_waves = encoder_out.size(0) hyps = [] for i in range(num_waves): # fmt: off encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] # fmt: on if params.method == "greedy_search": hyp = greedy_search(model=model, encoder_out=encoder_out_i) elif params.method == "beam_search": hyp = beam_search( model=model, encoder_out=encoder_out_i, beam=params.beam_size ) else: raise ValueError(f"Unsupported method: {params.method}") hyps.append(token_ids_to_words(hyp)) s = "\n" for filename, hyp in zip(params.sound_files, hyps): s += f"{filename}:\n{hyp}\n\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()