#!/usr/bin/env python3 # Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from typing import Optional, Tuple, Union import torch from torch import Tensor, nn from transformer import Supervisions, Transformer, encoder_padding_mask class Conformer(Transformer): """ Args: num_features (int): Number of input features num_classes (int): Number of output classes subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers) d_model (int): attention dimension nhead (int): number of head dim_feedforward (int): feedforward dimention num_encoder_layers (int): number of encoder layers num_decoder_layers (int): number of decoder layers dropout (float): dropout rate cnn_module_kernel (int): Kernel size of convolution module normalize_before (bool): whether to use layer_norm before the first block. vgg_frontend (bool): whether to use vgg frontend. """ def __init__( self, num_features: int, num_classes: int, subsampling_factor: int = 4, d_model: int = 256, nhead: int = 4, dim_feedforward: int = 2048, num_encoder_layers: int = 12, num_decoder_layers: int = 6, dropout: float = 0.1, cnn_module_kernel: int = 31, normalize_before: bool = True, vgg_frontend: bool = False, use_feat_batchnorm: Union[float, bool] = 0.1, ) -> None: super(Conformer, self).__init__( num_features=num_features, num_classes=num_classes, subsampling_factor=subsampling_factor, d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dropout=dropout, normalize_before=normalize_before, vgg_frontend=vgg_frontend, use_feat_batchnorm=use_feat_batchnorm, ) self.encoder_pos = RelPositionalEncoding(d_model, dropout) use_conv_batchnorm = True if isinstance(use_feat_batchnorm, float): use_conv_batchnorm = False encoder_layer = ConformerEncoderLayer( d_model, nhead, dim_feedforward, dropout, cnn_module_kernel, normalize_before, use_conv_batchnorm, ) self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers) self.normalize_before = normalize_before if self.normalize_before: self.after_norm = nn.LayerNorm(d_model) else: # Note: TorchScript detects that self.after_norm could be used inside forward() # and throws an error without this change. self.after_norm = identity def run_encoder( self, x: Tensor, supervisions: Optional[Supervisions] = None ) -> Tuple[Tensor, Optional[Tensor]]: """ Args: x: The model input. Its shape is (N, T, C). supervisions: Supervision in lhotse format. See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa CAUTION: It contains length information, i.e., start and number of frames, before subsampling It is read directly from the batch, without any sorting. It is used to compute encoder padding mask, which is used as memory key padding mask for the decoder. Returns: Tensor: Predictor tensor of dimension (input_length, batch_size, d_model). Tensor: Mask tensor of dimension (batch_size, input_length) """ x = self.encoder_embed(x) x, pos_emb = self.encoder_pos(x) x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F) mask = encoder_padding_mask(x.size(0), supervisions) if mask is not None: mask = mask.to(x.device) x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F) if self.normalize_before: x = self.after_norm(x) return x, mask class ConformerEncoderLayer(nn.Module): """ ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks. See: "Conformer: Convolution-augmented Transformer for Speech Recognition" Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). cnn_module_kernel (int): Kernel size of convolution module. normalize_before: whether to use layer_norm before the first block. Examples:: >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> pos_emb = torch.rand(32, 19, 512) >>> out = encoder_layer(src, pos_emb) """ def __init__( self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, cnn_module_kernel: int = 31, normalize_before: bool = True, use_conv_batchnorm: bool = False, ) -> None: super(ConformerEncoderLayer, self).__init__() self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( nn.Linear(d_model, dim_feedforward), Swish(), nn.Dropout(dropout), nn.Linear(dim_feedforward, d_model), ) self.feed_forward_macaron = nn.Sequential( nn.Linear(d_model, dim_feedforward), Swish(), nn.Dropout(dropout), nn.Linear(dim_feedforward, d_model), ) self.conv_module = ConvolutionModule( d_model, cnn_module_kernel, use_batchnorm=use_conv_batchnorm ) self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module self.norm_ff = nn.LayerNorm(d_model) # for the FNN module self.norm_mha = nn.LayerNorm(d_model) # for the MHA module self.ff_scale = 0.5 self.norm_conv = nn.LayerNorm(d_model) # for the CNN module self.norm_final = nn.LayerNorm(d_model) # for the final output of the block self.dropout = nn.Dropout(dropout) self.normalize_before = normalize_before def forward( self, src: Tensor, pos_emb: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, ) -> Tensor: """ Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). pos_emb: Positional embedding tensor (required). src_mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: src: (S, N, E). pos_emb: (N, 2*S-1, E) src_mask: (S, S). src_key_padding_mask: (N, S). S is the source sequence length, N is the batch size, E is the feature number """ # macaron style feed forward module residual = src if self.normalize_before: src = self.norm_ff_macaron(src) src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src)) if not self.normalize_before: src = self.norm_ff_macaron(src) # multi-headed self-attention module residual = src if self.normalize_before: src = self.norm_mha(src) src_att = self.self_attn( src, src, src, pos_emb=pos_emb, attn_mask=src_mask, key_padding_mask=src_key_padding_mask, )[0] src = residual + self.dropout(src_att) if not self.normalize_before: src = self.norm_mha(src) # convolution module residual = src if self.normalize_before: src = self.norm_conv(src) src = residual + self.dropout( self.conv_module(src, src_key_padding_mask=src_key_padding_mask) ) if not self.normalize_before: src = self.norm_conv(src) # feed forward module residual = src if self.normalize_before: src = self.norm_ff(src) src = residual + self.ff_scale * self.dropout(self.feed_forward(src)) if not self.normalize_before: src = self.norm_ff(src) if self.normalize_before: src = self.norm_final(src) return src class ConformerEncoder(nn.TransformerEncoder): r"""ConformerEncoder is a stack of N encoder layers Args: encoder_layer: an instance of the ConformerEncoderLayer() class (required). num_layers: the number of sub-encoder-layers in the encoder (required). norm: the layer normalization component (optional). Examples:: >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8) >>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6) >>> src = torch.rand(10, 32, 512) >>> pos_emb = torch.rand(32, 19, 512) >>> out = conformer_encoder(src, pos_emb) """ def __init__( self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None ) -> None: super(ConformerEncoder, self).__init__( encoder_layer=encoder_layer, num_layers=num_layers, norm=norm ) def forward( self, src: Tensor, pos_emb: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, ) -> Tensor: r"""Pass the input through the encoder layers in turn. Args: src: the sequence to the encoder (required). pos_emb: Positional embedding tensor (required). mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: src: (S, N, E). pos_emb: (N, 2*S-1, E) mask: (S, S). src_key_padding_mask: (N, S). S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number """ output = src for mod in self.layers: output = mod( output, pos_emb, src_mask=mask, src_key_padding_mask=src_key_padding_mask, ) if self.norm is not None: output = self.norm(output) return output class RelPositionalEncoding(torch.nn.Module): """Relative positional encoding module. See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py Args: d_model: Embedding dimension. dropout_rate: Dropout rate. max_len: Maximum input length. """ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model self.xscale = math.sqrt(self.d_model) self.dropout = torch.nn.Dropout(p=dropout_rate) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) def extend_pe(self, x: Tensor) -> None: """Reset the positional encodings.""" if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i Tuple[Tensor, Tensor]: """Add positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). torch.Tensor: Encoded tensor (batch, 2*time-1, `*`). """ self.extend_pe(x) x = x * self.xscale pos_emb = self.pe[ :, self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 # noqa E203 + x.size(1), ] return self.dropout(x), self.dropout(pos_emb) class RelPositionMultiheadAttention(nn.Module): r"""Multi-Head Attention layer with relative position encoding See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. Examples:: >>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb) """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, ) -> None: super(RelPositionMultiheadAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True) # linear transformation for positional encoding. self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim)) self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim)) self._reset_parameters() def _reset_parameters(self) -> None: nn.init.xavier_uniform_(self.in_proj.weight) nn.init.constant_(self.in_proj.bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) nn.init.xavier_uniform_(self.pos_bias_u) nn.init.xavier_uniform_(self.pos_bias_v) def forward( self, query: Tensor, key: Tensor, value: Tensor, pos_emb: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. pos_emb: Positional embedding tensor key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ return self.multi_head_attention_forward( query, key, value, pos_emb, self.embed_dim, self.num_heads, self.in_proj.weight, self.in_proj.bias, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, ) def rel_shift(self, x: Tensor) -> Tensor: """Compute relative positional encoding. Args: x: Input tensor (batch, head, time1, 2*time1-1). time1 means the length of query vector. Returns: Tensor: tensor of shape (batch, head, time1, time2) (note: time2 has the same value as time1, but it is for the key, while time1 is for the query). """ (batch_size, num_heads, time1, n) = x.shape assert n == 2 * time1 - 1 # Note: TorchScript requires explicit arg for stride() batch_stride = x.stride(0) head_stride = x.stride(1) time1_stride = x.stride(2) n_stride = x.stride(3) return x.as_strided( (batch_size, num_heads, time1, time1), (batch_stride, head_stride, time1_stride - n_stride, n_stride), storage_offset=n_stride * (time1 - 1), ) def multi_head_attention_forward( self, query: Tensor, key: Tensor, value: Tensor, pos_emb: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. pos_emb: Positional embedding tensor embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert ( head_dim * num_heads == embed_dim ), "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( 3, dim=-1 ) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = nn.functional.linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = nn.functional.linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = nn.functional.linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = nn.functional.linear(value, _w, _b) if attn_mask is not None: assert ( attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool ), "Only float, byte, and bool types are supported for attn_mask, not {}".format( attn_mask.dtype ) if attn_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for attn_mask is deprecated. Use bool tensor instead." ) attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) key_padding_mask = key_padding_mask.to(torch.bool) q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim) k = k.contiguous().view(-1, bsz, num_heads, head_dim) v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) src_len = k.size(0) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz, "{} == {}".format( key_padding_mask.size(0), bsz ) assert key_padding_mask.size(1) == src_len, "{} == {}".format( key_padding_mask.size(1), src_len ) q = q.transpose(0, 1) # (batch, time1, head, d_k) pos_emb_bsz = pos_emb.size(0) assert pos_emb_bsz in (1, bsz) # actually it is 1 p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim) p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose( 1, 2 ) # (batch, head, time1, d_k) q_with_bias_v = (q + self.pos_bias_v).transpose( 1, 2 ) # (batch, head, time1, d_k) # compute attention score # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( q_with_bias_v, p.transpose(-2, -1) ) # (batch, head, time1, 2*time1-1) matrix_bd = self.rel_shift(matrix_bd) attn_output_weights = ( matrix_ac + matrix_bd ) * scaling # (batch, head, time1, time2) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, tgt_len, src_len, ] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float("-inf")) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view( bsz, num_heads, tgt_len, src_len ) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float("-inf"), ) attn_output_weights = attn_output_weights.view( bsz * num_heads, tgt_len, src_len ) attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1) attn_output_weights = nn.functional.dropout( attn_output_weights, p=dropout_p, training=training ) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view( bsz, num_heads, tgt_len, src_len ) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None class ConvolutionModule(nn.Module): """ConvolutionModule in Conformer model. Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py Args: channels (int): The number of channels of conv layers. kernel_size (int): Kernerl size of conv layers. bias (bool): Whether to use bias in conv layers (default=True). """ def __init__( self, channels: int, kernel_size: int, bias: bool = True, use_batchnorm: bool = False, ) -> None: """Construct an ConvolutionModule object.""" super(ConvolutionModule, self).__init__() # kernerl_size should be a odd number for 'SAME' padding assert (kernel_size - 1) % 2 == 0 self.use_batchnorm = use_batchnorm self.pointwise_conv1 = nn.Conv1d( channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.depthwise_conv = nn.Conv1d( channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=bias, ) if self.use_batchnorm: self.norm = nn.BatchNorm1d(channels) self.pointwise_conv2 = nn.Conv1d( channels, channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.activation = Swish() def forward( self, x: Tensor, src_key_padding_mask: Optional[Tensor] = None, ) -> Tensor: """Compute convolution module. Args: x: Input tensor (#time, batch, channels). src_key_padding_mask: the mask for the src keys per batch (optional). Returns: Tensor: Output tensor (#time, batch, channels). """ # exchange the temporal dimension and the feature dimension x = x.permute(1, 2, 0) # (#batch, channels, time). # GLU mechanism x = self.pointwise_conv1(x) # (batch, 2*channels, time) x = nn.functional.glu(x, dim=1) # (batch, channels, time) # 1D Depthwise Conv if src_key_padding_mask is not None: x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0) x = self.depthwise_conv(x) if self.use_batchnorm: x = self.norm(x) x = self.activation(x) x = self.pointwise_conv2(x) # (batch, channel, time) return x.permute(2, 0, 1) class Swish(torch.nn.Module): """Construct an Swish object.""" def forward(self, x: Tensor) -> Tensor: """Return Swich activation function.""" return x * torch.sigmoid(x) def identity(x): return x