#!/usr/bin/env python3 # Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang, # Fangjun Kuang, # Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: ./zipformer/streaming_decode.py \ --epoch 28 \ --avg 15 \ --causal 1 \ --chunk-size 32 \ --left-context-frames 256 \ --exp-dir ./zipformer/exp \ --decoding-method greedy_search \ --num-decode-streams 2000 """ import argparse import logging import math from pathlib import Path from typing import Dict, List, Optional, Tuple import k2 import numpy as np import sentencepiece as spm import torch from asr_datamodule import GigaSpeechAsrDataModule from decode_stream import DecodeStream from kaldifeat import Fbank, FbankOptions from lhotse import CutSet from streaming_beam_search import ( fast_beam_search_one_best, greedy_search, modified_beam_search, ) from torch import Tensor, nn from torch.nn.utils.rnn import pad_sequence from train import add_model_arguments, get_params, get_model from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.utils import ( AttributeDict, make_pad_mask, setup_logger, store_transcripts, str2bool, write_error_stats, ) LOG_EPS = math.log(1e-10) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=28, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=True, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--exp-dir", type=str, default="zipformer/exp", help="The experiment dir", ) parser.add_argument( "--bpe-model", type=str, default="data/lang_bpe_500/bpe.model", help="Path to the BPE model", ) parser.add_argument( "--decoding-method", type=str, default="greedy_search", help="""Supported decoding methods are: greedy_search modified_beam_search fast_beam_search """, ) parser.add_argument( "--num_active_paths", type=int, default=4, help="""An interger indicating how many candidates we will keep for each frame. Used only when --decoding-method is modified_beam_search.""", ) parser.add_argument( "--beam", type=float, default=4, help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--max-contexts", type=int, default=4, help="""Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--max-states", type=int, default=32, help="""Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--num-decode-streams", type=int, default=2000, help="The number of streams that can be decoded parallel.", ) add_model_arguments(parser) return parser def get_init_states( model: nn.Module, batch_size: int = 1, device: torch.device = torch.device("cpu"), ) -> List[torch.Tensor]: """ Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2). states[-2] is the cached left padding for ConvNeXt module, of shape (batch_size, num_channels, left_pad, num_freqs) states[-1] is processed_lens of shape (batch,), which records the number of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch. """ states = model.encoder.get_init_states(batch_size, device) embed_states = model.encoder_embed.get_init_states(batch_size, device) states.append(embed_states) processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device) states.append(processed_lens) return states def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]: """Stack list of zipformer states that correspond to separate utterances into a single emformer state, so that it can be used as an input for zipformer when those utterances are formed into a batch. Args: state_list: Each element in state_list corresponding to the internal state of the zipformer model for a single utterance. For element-n, state_list[n] is a list of cached tensors of all encoder layers. For layer-i, state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2). state_list[n][-2] is the cached left padding for ConvNeXt module, of shape (batch_size, num_channels, left_pad, num_freqs) state_list[n][-1] is processed_lens of shape (batch,), which records the number of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch. Note: It is the inverse of :func:`unstack_states`. """ batch_size = len(state_list) assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0]) tot_num_layers = (len(state_list[0]) - 2) // 6 batch_states = [] for layer in range(tot_num_layers): layer_offset = layer * 6 # cached_key: (left_context_len, batch_size, key_dim) cached_key = torch.cat( [state_list[i][layer_offset] for i in range(batch_size)], dim=1 ) # cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim) cached_nonlin_attn = torch.cat( [state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1 ) # cached_val1: (left_context_len, batch_size, value_dim) cached_val1 = torch.cat( [state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1 ) # cached_val2: (left_context_len, batch_size, value_dim) cached_val2 = torch.cat( [state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1 ) # cached_conv1: (#batch, channels, left_pad) cached_conv1 = torch.cat( [state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0 ) # cached_conv2: (#batch, channels, left_pad) cached_conv2 = torch.cat( [state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0 ) batch_states += [ cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2, ] cached_embed_left_pad = torch.cat( [state_list[i][-2] for i in range(batch_size)], dim=0 ) batch_states.append(cached_embed_left_pad) processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0) batch_states.append(processed_lens) return batch_states def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]: """Unstack the zipformer state corresponding to a batch of utterances into a list of states, where the i-th entry is the state from the i-th utterance in the batch. Note: It is the inverse of :func:`stack_states`. Args: batch_states: A list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2). state_list[-2] is the cached left padding for ConvNeXt module, of shape (batch_size, num_channels, left_pad, num_freqs) states[-1] is processed_lens of shape (batch,), which records the number of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch. Returns: state_list: A list of list. Each element in state_list corresponding to the internal state of the zipformer model for a single utterance. """ assert (len(batch_states) - 2) % 6 == 0, len(batch_states) tot_num_layers = (len(batch_states) - 2) // 6 processed_lens = batch_states[-1] batch_size = processed_lens.shape[0] state_list = [[] for _ in range(batch_size)] for layer in range(tot_num_layers): layer_offset = layer * 6 # cached_key: (left_context_len, batch_size, key_dim) cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1) # cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim) cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk( chunks=batch_size, dim=1 ) # cached_val1: (left_context_len, batch_size, value_dim) cached_val1_list = batch_states[layer_offset + 2].chunk( chunks=batch_size, dim=1 ) # cached_val2: (left_context_len, batch_size, value_dim) cached_val2_list = batch_states[layer_offset + 3].chunk( chunks=batch_size, dim=1 ) # cached_conv1: (#batch, channels, left_pad) cached_conv1_list = batch_states[layer_offset + 4].chunk( chunks=batch_size, dim=0 ) # cached_conv2: (#batch, channels, left_pad) cached_conv2_list = batch_states[layer_offset + 5].chunk( chunks=batch_size, dim=0 ) for i in range(batch_size): state_list[i] += [ cached_key_list[i], cached_nonlin_attn_list[i], cached_val1_list[i], cached_val2_list[i], cached_conv1_list[i], cached_conv2_list[i], ] cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0) for i in range(batch_size): state_list[i].append(cached_embed_left_pad_list[i]) processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0) for i in range(batch_size): state_list[i].append(processed_lens_list[i]) return state_list def streaming_forward( features: Tensor, feature_lens: Tensor, model: nn.Module, states: List[Tensor], chunk_size: int, left_context_len: int, ) -> Tuple[Tensor, Tensor, List[Tensor]]: """ Returns encoder outputs, output lengths, and updated states. """ cached_embed_left_pad = states[-2] (x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward( x=features, x_lens=feature_lens, cached_left_pad=cached_embed_left_pad, ) assert x.size(1) == chunk_size, (x.size(1), chunk_size) src_key_padding_mask = make_pad_mask(x_lens) # processed_mask is used to mask out initial states processed_mask = torch.arange(left_context_len, device=x.device).expand( x.size(0), left_context_len ) processed_lens = states[-1] # (batch,) # (batch, left_context_size) processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1) # Update processed lengths new_processed_lens = processed_lens + x_lens # (batch, left_context_size + chunk_size) src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1) x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) encoder_states = states[:-2] ( encoder_out, encoder_out_lens, new_encoder_states, ) = model.encoder.streaming_forward( x=x, x_lens=x_lens, states=encoder_states, src_key_padding_mask=src_key_padding_mask, ) encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C) new_states = new_encoder_states + [ new_cached_embed_left_pad, new_processed_lens, ] return encoder_out, encoder_out_lens, new_states def decode_one_chunk( params: AttributeDict, model: nn.Module, decode_streams: List[DecodeStream], ) -> List[int]: """Decode one chunk frames of features for each decode_streams and return the indexes of finished streams in a List. Args: params: It's the return value of :func:`get_params`. model: The neural model. decode_streams: A List of DecodeStream, each belonging to a utterance. Returns: Return a List containing which DecodeStreams are finished. """ device = model.device chunk_size = int(params.chunk_size) left_context_len = int(params.left_context_frames) features = [] feature_lens = [] states = [] processed_lens = [] # Used in fast-beam-search for stream in decode_streams: feat, feat_len = stream.get_feature_frames(chunk_size * 2) features.append(feat) feature_lens.append(feat_len) states.append(stream.states) processed_lens.append(stream.done_frames) feature_lens = torch.tensor(feature_lens, device=device) features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS) # Make sure the length after encoder_embed is at least 1. # The encoder_embed subsample features (T - 7) // 2 # The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling tail_length = chunk_size * 2 + 7 + 2 * 3 if features.size(1) < tail_length: pad_length = tail_length - features.size(1) feature_lens += pad_length features = torch.nn.functional.pad( features, (0, 0, 0, pad_length), mode="constant", value=LOG_EPS, ) states = stack_states(states) encoder_out, encoder_out_lens, new_states = streaming_forward( features=features, feature_lens=feature_lens, model=model, states=states, chunk_size=chunk_size, left_context_len=left_context_len, ) encoder_out = model.joiner.encoder_proj(encoder_out) if params.decoding_method == "greedy_search": greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams) elif params.decoding_method == "fast_beam_search": processed_lens = torch.tensor(processed_lens, device=device) processed_lens = processed_lens + encoder_out_lens fast_beam_search_one_best( model=model, encoder_out=encoder_out, processed_lens=processed_lens, streams=decode_streams, beam=params.beam, max_states=params.max_states, max_contexts=params.max_contexts, ) elif params.decoding_method == "modified_beam_search": modified_beam_search( model=model, streams=decode_streams, encoder_out=encoder_out, num_active_paths=params.num_active_paths, ) else: raise ValueError(f"Unsupported decoding method: {params.decoding_method}") states = unstack_states(new_states) finished_streams = [] for i in range(len(decode_streams)): decode_streams[i].states = states[i] decode_streams[i].done_frames += encoder_out_lens[i] if decode_streams[i].done: finished_streams.append(i) return finished_streams def decode_dataset( cuts: CutSet, params: AttributeDict, model: nn.Module, sp: spm.SentencePieceProcessor, decoding_graph: Optional[k2.Fsa] = None, ) -> Dict[str, List[Tuple[List[str], List[str]]]]: """Decode dataset. Args: cuts: Lhotse Cutset containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. sp: The BPE model. decoding_graph: The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used only when --decoding_method is fast_beam_search. Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ device = model.device opts = FbankOptions() opts.device = device opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = 16000 opts.mel_opts.num_bins = 80 log_interval = 100 decode_results = [] # Contain decode streams currently running. decode_streams = [] for num, cut in enumerate(cuts): # each utterance has a DecodeStream. initial_states = get_init_states(model=model, batch_size=1, device=device) decode_stream = DecodeStream( params=params, cut_id=cut.id, initial_states=initial_states, decoding_graph=decoding_graph, device=device, ) audio: np.ndarray = cut.load_audio() # audio.shape: (1, num_samples) assert len(audio.shape) == 2 assert audio.shape[0] == 1, "Should be single channel" assert audio.dtype == np.float32, audio.dtype # The trained model is using normalized samples assert audio.max() <= 1, "Should be normalized to [-1, 1])" samples = torch.from_numpy(audio).squeeze(0) fbank = Fbank(opts) feature = fbank(samples.to(device)) decode_stream.set_features(feature, tail_pad_len=30) decode_stream.ground_truth = cut.supervisions[0].text decode_streams.append(decode_stream) while len(decode_streams) >= params.num_decode_streams: finished_streams = decode_one_chunk( params=params, model=model, decode_streams=decode_streams ) for i in sorted(finished_streams, reverse=True): decode_results.append( ( decode_streams[i].id, decode_streams[i].ground_truth.split(), sp.decode(decode_streams[i].decoding_result()).split(), ) ) del decode_streams[i] if num % log_interval == 0: logging.info(f"Cuts processed until now is {num}.") # decode final chunks of last sequences while len(decode_streams): finished_streams = decode_one_chunk( params=params, model=model, decode_streams=decode_streams ) for i in sorted(finished_streams, reverse=True): decode_results.append( ( decode_streams[i].id, decode_streams[i].ground_truth.split(), sp.decode(decode_streams[i].decoding_result()).split(), ) ) del decode_streams[i] if params.decoding_method == "greedy_search": key = "greedy_search" elif params.decoding_method == "fast_beam_search": key = ( f"beam_{params.beam}_" f"max_contexts_{params.max_contexts}_" f"max_states_{params.max_states}" ) elif params.decoding_method == "modified_beam_search": key = f"num_active_paths_{params.num_active_paths}" else: raise ValueError(f"Unsupported decoding method: {params.decoding_method}") return {key: decode_results} def save_results( params: AttributeDict, test_set_name: str, results_dict: Dict[str, List[Tuple[List[str], List[str]]]], ): test_set_wers = dict() for key, results in results_dict.items(): recog_path = ( params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" ) results = sorted(results) store_transcripts(filename=recog_path, texts=results) logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = ( params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results, enable_log=True ) test_set_wers[key] = wer logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) s = "\nFor {}, WER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) note = "" logging.info(s) @torch.no_grad() def main(): parser = get_parser() GigaSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) params.res_dir = params.exp_dir / "streaming" / params.decoding_method if params.iter > 0: params.suffix = f"iter-{params.iter}-avg-{params.avg}" else: params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" assert params.causal, params.causal assert "," not in params.chunk_size, "chunk_size should be one value in decoding." assert ( "," not in params.left_context_frames ), "left_context_frames should be one value in decoding." params.suffix += f"-chunk-{params.chunk_size}" params.suffix += f"-left-context-{params.left_context_frames}" # for fast_beam_search if params.decoding_method == "fast_beam_search": params.suffix += f"-beam-{params.beam}" params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" if params.use_averaged_model: params.suffix += "-use-averaged-model" setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") logging.info("Decoding started") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"Device: {device}") sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) # and is defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.unk_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() logging.info(params) logging.info("About to create model") model = get_model(params) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if start >= 0: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.to(device) model.eval() model.device = device decoding_graph = None if params.decoding_method == "fast_beam_search": decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") gigaspeech = GigaSpeechAsrDataModule(args) dev_cuts = gigaspeech.dev_cuts() test_cuts = gigaspeech.test_cuts() test_sets = ["dev", "test"] test_cuts = [dev_cuts, test_cuts] for test_set, test_cut in zip(test_sets, test_cuts): results_dict = decode_dataset( cuts=test_cut, params=params, model=model, sp=sp, decoding_graph=decoding_graph, ) save_results( params=params, test_set_name=test_set, results_dict=results_dict, ) logging.info("Done!") if __name__ == "__main__": main()