#!/usr/bin/env python3 # # Copyright 2023 Xiaomi Corp. (Author: Yifan Yang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: ./pruned_transducer_stateless7/compute_ppl.py \ --ngram-lm-path ./download/lm/3gram_pruned_1e7.arpa """ import argparse import logging import math from typing import Dict, List, Optional, Tuple import kenlm import torch from asr_datamodule import GigaSpeechAsrDataModule def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--ngram-lm-path", type=str, default="download/lm/3gram_pruned_1e7.arpa", help="The lang dir containing word table and LG graph", ) return parser def decode_dataset( dl: torch.utils.data.DataLoader, model: kenlm.Model, ) -> Dict[str, float]: """ Args: dl: PyTorch's dataloader containing the dataset to decode. model: A ngram lm of kenlm.Model object. Returns: Return the perplexity of the giving dataset. """ sum_score_log = 0 sum_n = 0 for batch_idx, batch in enumerate(dl): texts = batch["supervisions"]["text"] for text in texts: sum_n += len(text.split()) + 1 sum_score_log += -1 * model.score(text) ppl = math.pow(10.0, sum_score_log / sum_n) return ppl def main(): parser = get_parser() GigaSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() logging.info("About to load ngram LM") model = kenlm.Model(args.ngram_lm_path) gigaspeech = GigaSpeechAsrDataModule(args) dev_cuts = gigaspeech.dev_cuts() test_cuts = gigaspeech.test_cuts() dev_dl = gigaspeech.test_dataloaders(dev_cuts) test_dl = gigaspeech.test_dataloaders(test_cuts) test_sets = ["dev", "test"] test_dls = [dev_dl, test_dl] for test_set, test_dl in zip(test_sets, test_dls): ppl = decode_dataset( dl=test_dl, model=model, ) logging.info(f"{test_set} PPL: {ppl}") logging.info("Done!") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()