#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=0 stop_stage=100 # Split XL subset to a number of pieces (about 2000) # This is to avoid OOM during feature extraction. num_per_split=50 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/GigaSpeech # You can find audio, dict, GigaSpeech.json inside it. # You can apply for the download credentials by following # https://github.com/SpeechColab/GigaSpeech#download # # - $dl_dir/lm # This directory contains the language model downloaded from # https://huggingface.co/wgb14/gigaspeech_lm # # - 3gram_pruned_1e7.arpa.gz # - 4gram.arpa.gz # - lexicon.txt # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "stage -1: Download LM" # We assume that you have installed the git-lfs, if not, you could install it # using: `sudo apt-get install git-lfs && git-lfs install` [ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm git clone https://huggingface.co/wgb14/gigaspeech_lm $dl_dir/lm gunzip -c $dl_dir/lm/3gram_pruned_1e7.arpa.gz > $dl_dir/lm/3gram_pruned_1e7.arpa gunzip -c $dl_dir/lm/4gram.arpa.gz > $dl_dir/lm/4gram.arpa fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" [ ! -e $dl_dir/GigaSpeech ] && mkdir -p $dl_dir/GigaSpeech # If you have pre-downloaded it to /path/to/GigaSpeech, # you can create a symlink # # ln -sfv /path/to/GigaSpeech $dl_dir/GigaSpeech # if [ ! -d $dl_dir/GigaSpeech/audio ] && [ ! -f $dl_dir/GigaSpeech.json ]; then # Check credentials. if [ ! -f $dl_dir/password ]; then echo -n "$0: Please apply for the download credentials by following" echo -n "https://github.com/SpeechColab/GigaSpeech#download" echo " and save it to $dl_dir/password." exit 1; fi PASSWORD=`cat $dl_dir/password 2>/dev/null` if [ -z "$PASSWORD" ]; then echo "$0: Error, $dl_dir/password is empty." exit 1; fi PASSWORD_MD5=`echo $PASSWORD | md5sum | cut -d ' ' -f 1` if [[ $PASSWORD_MD5 != "dfbf0cde1a3ce23749d8d81e492741b8" ]]; then echo "$0: Error, invalid $dl_dir/password." exit 1; fi # Download XL, DEV and TEST sets by default. lhotse download gigaspeech --subset auto --host tsinghua \ $dl_dir/password $dl_dir/GigaSpeech fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare GigaSpeech manifest (may take 15 minutes)" # We assume that you have downloaded the GigaSpeech corpus # to $dl_dir/GigaSpeech mkdir -p data/manifests lhotse prepare gigaspeech --subset auto -j $nj \ $dl_dir/GigaSpeech data/manifests fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to $dl_dir/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "State 3: Preprocess GigaSpeech manifest" if [ ! -f data/fbank/.preprocess_complete ]; then python3 ./local/preprocess_gigaspeech.py touch data/fbank/.preprocess_complete fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute features for DEV and TEST subsets of GigaSpeech (may take 2 minutes)" python3 ./local/compute_fbank_gigaspeech_dev_test.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Split XL subset into pieces (may take 30 minutes)" split_dir=data/fbank/XL_split if [ ! -f $split_dir/.split_completed ]; then lhotse split-lazy ./data/fbank/cuts_XL_raw.jsonl.gz $split_dir $num_per_split touch $split_dir/.split_completed fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Compute features for XL" num_splits=$(find data/fbank/XL_split -name "cuts_XL_raw.*.jsonl.gz" | wc -l) python3 ./local/compute_fbank_gigaspeech_splits.py \ --num-workers 20 \ --batch-duration 600 \ --num-splits $num_splits fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Combine features for XL (may take 3 hours)" if [ ! -f data/fbank/cuts_XL.jsonl.gz ]; then pieces=$(find data/fbank/XL_split -name "cuts_XL.*.jsonl.gz") lhotse combine $pieces data/fbank/cuts_XL.jsonl.gz fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Compute fbank for musan" mkdir -p data/fbank ./local/compute_fbank_musan.py fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/lexicon.txt | sort | uniq > $lang_dir/lexicon.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi if [ ! -f $lang_dir/transcript_words.txt ]; then gunzip -c "data/manifests/gigaspeech_supervisions_XL.jsonl.gz" \ | jq '.text' \ | sed 's/"//g' \ > $lang_dir/transcript_words.txt # Delete utterances with garbage meta tags garbage_utterance_tags=" " for tag in $garbage_utterance_tags; do sed -i "/${tag}/d" $lang_dir/transcript_words.txt done # Delete punctuations in utterances punctuation_tags=" " for tag in $punctuation_tags; do sed -i "s/${tag}//g" $lang_dir/transcript_words.txt done # Ensure space only appears once sed -i 's/\t/ /g' $lang_dir/transcript_words.txt sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt fi cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \ | sort -u | sed '/^$/d' > $lang_dir/words.txt (echo '!SIL'; echo ''; echo ''; ) | cat - $lang_dir/words.txt | sort | uniq | awk ' BEGIN { print " 0"; } { if ($1 == "") { print " is in the vocabulary!" | "cat 1>&2" exit 1; } if ($1 == "") { print " is in the vocabulary!" | "cat 1>&2" exit 1; } printf("%s %d\n", $1, NR); } END { printf("#0 %d\n", NR+1); printf(" %d\n", NR+2); printf(" %d\n", NR+3); }' > $lang_dir/words || exit 1; mv $lang_dir/words $lang_dir/words.txt fi if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/{words.txt,transcript_words.txt} $lang_dir if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir fi done fi if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then log "Stage 11: Prepare bigram P" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} if [ ! -f $lang_dir/transcript_tokens.txt ]; then ./local/convert_transcript_words_to_tokens.py \ --lexicon $lang_dir/lexicon.txt \ --transcript $lang_dir/transcript_words.txt \ --oov "" \ > $lang_dir/transcript_tokens.txt fi if [ ! -f $lang_dir/P.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 2 \ -text $lang_dir/transcript_tokens.txt \ -lm $lang_dir/P.arpa fi if [ ! -f $lang_dir/P.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_dir/tokens.txt" \ --disambig-symbol='#0' \ --max-order=2 \ $lang_dir/P.arpa > $lang_dir/P.fst.txt fi done fi if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then log "Stage 12: Prepare G" # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $dl_dir/lm/3gram_pruned_1e7.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ $dl_dir/lm/4gram.arpa > data/lm/G_4_gram.fst.txt fi fi if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then log "Stage 13: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir done fi