#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, # Wei Kang # Mingshuang Luo) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging from pathlib import Path from shutil import copyfile from typing import Optional, Tuple import k2 import torch import torch.multiprocessing as mp import torch.nn as nn from asr_datamodule import GigaSpeechAsrDataModule from conformer import Conformer from lhotse.utils import fix_random_seed from torch import Tensor from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.utils import clip_grad_norm_ from torch.utils.tensorboard import SummaryWriter from transformer import Noam from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler from icefall.checkpoint import load_checkpoint from icefall.checkpoint import save_checkpoint as save_checkpoint_impl from icefall.dist import cleanup_dist, setup_dist from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, MetricsTracker, encode_supervisions, setup_logger, str2bool, ) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--world-size", type=int, default=1, help="Number of GPUs for DDP training.", ) parser.add_argument( "--master-port", type=int, default=12354, help="Master port to use for DDP training.", ) parser.add_argument( "--tensorboard", type=str2bool, default=True, help="Should various information be logged in tensorboard.", ) parser.add_argument( "--num-epochs", type=int, default=20, help="Number of epochs to train.", ) parser.add_argument( "--start-epoch", type=int, default=0, help="""Resume training from from this epoch. If it is positive, it will load checkpoint from conformer_ctc/exp/epoch-{start_epoch-1}.pt """, ) parser.add_argument( "--exp-dir", type=str, default="conformer_ctc/exp", help="""The experiment dir. It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--lang-dir", type=str, default="data/lang_bpe_500", help="""The lang dir It contains language related input files such as "lexicon.txt" """, ) parser.add_argument( "--att-rate", type=float, default=0.7, help="""The attention rate. The total loss is (1 - att_rate) * ctc_loss + att_rate * att_loss """, ) parser.add_argument( "--lr-factor", type=float, default=5.0, help="The lr_factor for Noam optimizer", ) return parser def get_params() -> AttributeDict: """Return a dict containing training parameters. All training related parameters that are not passed from the commandline are saved in the variable `params`. Commandline options are merged into `params` after they are parsed, so you can also access them via `params`. Explanation of options saved in `params`: - best_train_loss: Best training loss so far. It is used to select the model that has the lowest training loss. It is updated during the training. - best_valid_loss: Best validation loss so far. It is used to select the model that has the lowest validation loss. It is updated during the training. - best_train_epoch: It is the epoch that has the best training loss. - best_valid_epoch: It is the epoch that has the best validation loss. - batch_idx_train: Used to writing statistics to tensorboard. It contains number of batches trained so far across epochs. - log_interval: Print training loss if batch_idx % log_interval` is 0 - reset_interval: Reset statistics if batch_idx % reset_interval is 0 - valid_interval: Run validation if batch_idx % valid_interval is 0 - feature_dim: The model input dim. It has to match the one used in computing features. - subsampling_factor: The subsampling factor for the model. - use_feat_batchnorm: Normalization for the input features, can be a boolean indicating whether to do batch normalization, or a float which means just scaling the input features with this float value. If given a float value, we will remove batchnorm layer in `ConvolutionModule` as well. - attention_dim: Hidden dim for multi-head attention model. - head: Number of heads of multi-head attention model. - num_decoder_layers: Number of decoder layer of transformer decoder. - beam_size: It is used in k2.ctc_loss - reduction: It is used in k2.ctc_loss - use_double_scores: It is used in k2.ctc_loss - weight_decay: The weight_decay for the optimizer. - warm_step: The warm_step for Noam optimizer. """ params = AttributeDict( { "best_train_loss": float("inf"), "best_valid_loss": float("inf"), "best_train_epoch": -1, "best_valid_epoch": -1, "batch_idx_train": 0, "log_interval": 500, "reset_interval": 2000, "valid_interval": 30000, # parameters for conformer "feature_dim": 80, "subsampling_factor": 4, "use_feat_batchnorm": True, "attention_dim": 512, "nhead": 8, "num_decoder_layers": 6, # parameters for loss "beam_size": 10, "reduction": "sum", "use_double_scores": True, # parameters for Noam "weight_decay": 1e-6, "warm_step": 100000, "env_info": get_env_info(), } ) return params def load_checkpoint_if_available( params: AttributeDict, model: nn.Module, optimizer: Optional[torch.optim.Optimizer] = None, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, ) -> None: """Load checkpoint from file. If params.start_epoch is positive, it will load the checkpoint from `params.start_epoch - 1`. Otherwise, this function does nothing. Apart from loading state dict for `model`, `optimizer` and `scheduler`, it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, and `best_valid_loss` in `params`. Args: params: The return value of :func:`get_params`. model: The training model. optimizer: The optimizer that we are using. scheduler: The learning rate scheduler we are using. Returns: Return None. """ if params.start_epoch <= 0: return filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" saved_params = load_checkpoint( filename, model=model, optimizer=optimizer, scheduler=scheduler, ) keys = [ "best_train_epoch", "best_valid_epoch", "batch_idx_train", "best_train_loss", "best_valid_loss", ] for k in keys: params[k] = saved_params[k] return saved_params def save_checkpoint( params: AttributeDict, model: nn.Module, optimizer: Optional[torch.optim.Optimizer] = None, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, rank: int = 0, ) -> None: """Save model, optimizer, scheduler and training stats to file. Args: params: It is returned by :func:`get_params`. model: The training model. """ if rank != 0: return filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" save_checkpoint_impl( filename=filename, model=model, params=params, optimizer=optimizer, scheduler=scheduler, rank=rank, ) if params.best_train_epoch == params.cur_epoch: best_train_filename = params.exp_dir / "best-train-loss.pt" copyfile(src=filename, dst=best_train_filename) if params.best_valid_epoch == params.cur_epoch: best_valid_filename = params.exp_dir / "best-valid-loss.pt" copyfile(src=filename, dst=best_valid_filename) def compute_loss( params: AttributeDict, model: nn.Module, batch: dict, graph_compiler: BpeCtcTrainingGraphCompiler, is_training: bool, ) -> Tuple[Tensor, MetricsTracker]: """ Compute CTC loss given the model and its inputs. Args: params: Parameters for training. See :func:`get_params`. model: The model for training. It is an instance of Conformer in our case. batch: A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` for the content in it. graph_compiler: It is used to build a decoding graph from a ctc topo and training transcript. The training transcript is contained in the given `batch`, while the ctc topo is built when this compiler is instantiated. is_training: True for training. False for validation. When it is True, this function enables autograd during computation; when it is False, it disables autograd. """ device = graph_compiler.device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 feature = feature.to(device) supervisions = batch["supervisions"] with torch.set_grad_enabled(is_training): nnet_output, encoder_memory, memory_mask = model(feature, supervisions) # nnet_output is (N, T, C) # NOTE: We need `encode_supervisions` to sort sequences with # different duration in decreasing order, required by # `k2.intersect_dense` called in `k2.ctc_loss` supervision_segments, texts = encode_supervisions( supervisions, subsampling_factor=params.subsampling_factor ) token_ids = graph_compiler.texts_to_ids(texts) decoding_graph = graph_compiler.compile(token_ids) dense_fsa_vec = k2.DenseFsaVec( nnet_output, supervision_segments, allow_truncate=params.subsampling_factor - 1, ) ctc_loss = k2.ctc_loss( decoding_graph=decoding_graph, dense_fsa_vec=dense_fsa_vec, output_beam=params.beam_size, reduction=params.reduction, use_double_scores=params.use_double_scores, ) if params.att_rate != 0.0: with torch.set_grad_enabled(is_training): mmodel = model.module if hasattr(model, "module") else model # Note: We need to generate an unsorted version of token_ids # `encode_supervisions()` called above sorts text, but # encoder_memory and memory_mask are not sorted, so we # use an unsorted version `supervisions["text"]` to regenerate # the token_ids # # See https://github.com/k2-fsa/icefall/issues/97 # for more details unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"]) att_loss = mmodel.decoder_forward( encoder_memory, memory_mask, token_ids=unsorted_token_ids, sos_id=graph_compiler.sos_id, eos_id=graph_compiler.eos_id, ) loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss else: loss = ctc_loss att_loss = torch.tensor([0]) assert loss.requires_grad == is_training info = MetricsTracker() info["frames"] = supervision_segments[:, 2].sum().item() info["ctc_loss"] = ctc_loss.detach().cpu().item() if params.att_rate != 0.0: info["att_loss"] = att_loss.detach().cpu().item() info["loss"] = loss.detach().cpu().item() return loss, info def compute_validation_loss( params: AttributeDict, model: nn.Module, graph_compiler: BpeCtcTrainingGraphCompiler, valid_dl: torch.utils.data.DataLoader, world_size: int = 1, ) -> MetricsTracker: """Run the validation process.""" model.eval() tot_loss = MetricsTracker() for batch_idx, batch in enumerate(valid_dl): loss, loss_info = compute_loss( params=params, model=model, batch=batch, graph_compiler=graph_compiler, is_training=False, ) assert loss.requires_grad is False tot_loss = tot_loss + loss_info if world_size > 1: tot_loss.reduce(loss.device) loss_value = tot_loss["loss"] / tot_loss["frames"] if loss_value < params.best_valid_loss: params.best_valid_epoch = params.cur_epoch params.best_valid_loss = loss_value return tot_loss def train_one_epoch( params: AttributeDict, model: nn.Module, optimizer: torch.optim.Optimizer, graph_compiler: BpeCtcTrainingGraphCompiler, train_dl: torch.utils.data.DataLoader, valid_dl: torch.utils.data.DataLoader, tb_writer: Optional[SummaryWriter] = None, world_size: int = 1, ) -> None: """Train the model for one epoch. The training loss from the mean of all frames is saved in `params.train_loss`. It runs the validation process every `params.valid_interval` batches. Args: params: It is returned by :func:`get_params`. model: The model for training. optimizer: The optimizer we are using. graph_compiler: It is used to convert transcripts to FSAs. train_dl: Dataloader for the training dataset. valid_dl: Dataloader for the validation dataset. tb_writer: Writer to write log messages to tensorboard. world_size: Number of nodes in DDP training. If it is 1, DDP is disabled. """ model.train() tot_loss = MetricsTracker() for batch_idx, batch in enumerate(train_dl): params.batch_idx_train += 1 batch_size = len(batch["supervisions"]["text"]) loss, loss_info = compute_loss( params=params, model=model, batch=batch, graph_compiler=graph_compiler, is_training=True, ) # summary stats tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info # NOTE: We use reduction==sum and loss is computed over utterances # in the batch and there is no normalization to it so far. optimizer.zero_grad() loss.backward() clip_grad_norm_(model.parameters(), 5.0, 2.0) optimizer.step() if batch_idx % params.log_interval == 0: logging.info( f"Epoch {params.cur_epoch}, " f"batch {batch_idx}, loss[{loss_info}], " f"tot_loss[{tot_loss}], batch size: {batch_size}" ) if batch_idx % params.log_interval == 0: if tb_writer is not None: loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") valid_info = compute_validation_loss( params=params, model=model, graph_compiler=graph_compiler, valid_dl=valid_dl, world_size=world_size, ) model.train() logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") if tb_writer is not None: valid_info.write_summary( tb_writer, "train/valid_", params.batch_idx_train ) loss_value = tot_loss["loss"] / tot_loss["frames"] params.train_loss = loss_value if params.train_loss < params.best_train_loss: params.best_train_epoch = params.cur_epoch params.best_train_loss = params.train_loss def run(rank, world_size, args): """ Args: rank: It is a value between 0 and `world_size-1`, which is passed automatically by `mp.spawn()` in :func:`main`. The node with rank 0 is responsible for saving checkpoint. world_size: Number of GPUs for DDP training. args: The return value of get_parser().parse_args() """ params = get_params() params.update(vars(args)) fix_random_seed(42) if world_size > 1: setup_dist(rank, world_size, params.master_port) setup_logger(f"{params.exp_dir}/log/log-train") logging.info("Training started") logging.info(params) if args.tensorboard and rank == 0: tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") else: tb_writer = None lexicon = Lexicon(params.lang_dir) max_token_id = max(lexicon.tokens) num_classes = max_token_id + 1 # +1 for the blank device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", rank) graph_compiler = BpeCtcTrainingGraphCompiler( params.lang_dir, device=device, sos_token="", eos_token="", ) logging.info("About to create model") model = Conformer( num_features=params.feature_dim, nhead=params.nhead, d_model=params.attention_dim, num_classes=num_classes, subsampling_factor=params.subsampling_factor, num_decoder_layers=params.num_decoder_layers, vgg_frontend=False, use_feat_batchnorm=params.use_feat_batchnorm, ) checkpoints = load_checkpoint_if_available(params=params, model=model) model.to(device) if world_size > 1: model = DDP(model, device_ids=[rank]) optimizer = Noam( model.parameters(), model_size=params.attention_dim, factor=params.lr_factor, warm_step=params.warm_step, weight_decay=params.weight_decay, ) if checkpoints: optimizer.load_state_dict(checkpoints["optimizer"]) GigaSpeech = GigaSpeechAsrDataModule(args) train_cuts = GigaSpeech.train_cuts() train_dl = GigaSpeech.train_dataloaders(train_cuts) valid_cuts = GigaSpeech.dev_cuts() valid_dl = GigaSpeech.valid_dataloaders(valid_cuts) scan_pessimistic_batches_for_oom( model=model, train_dl=train_dl, optimizer=optimizer, graph_compiler=graph_compiler, params=params, ) for epoch in range(params.start_epoch, params.num_epochs): train_dl.sampler.set_epoch(epoch) cur_lr = optimizer._rate if tb_writer is not None: tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: logging.info("epoch {}, learning rate {}".format(epoch, cur_lr)) params.cur_epoch = epoch train_one_epoch( params=params, model=model, optimizer=optimizer, graph_compiler=graph_compiler, train_dl=train_dl, valid_dl=valid_dl, tb_writer=tb_writer, world_size=world_size, ) save_checkpoint( params=params, model=model, optimizer=optimizer, rank=rank, ) logging.info("Done!") if world_size > 1: torch.distributed.barrier() cleanup_dist() def scan_pessimistic_batches_for_oom( model: nn.Module, train_dl: torch.utils.data.DataLoader, optimizer: torch.optim.Optimizer, graph_compiler: BpeCtcTrainingGraphCompiler, params: AttributeDict, ): from lhotse.dataset import find_pessimistic_batches logging.info( "Sanity check -- see if any of the batches in epoch 0 would cause OOM." ) batches, crit_values = find_pessimistic_batches(train_dl.sampler) for criterion, cuts in batches.items(): batch = train_dl.dataset[cuts] try: optimizer.zero_grad() loss, _ = compute_loss( params=params, model=model, batch=batch, graph_compiler=graph_compiler, is_training=True, ) loss.backward() clip_grad_norm_(model.parameters(), 5.0, 2.0) optimizer.step() except RuntimeError as e: if "CUDA out of memory" in str(e): logging.error( "Your GPU ran out of memory with the current " "max_duration setting. We recommend decreasing " "max_duration and trying again.\n" f"Failing criterion: {criterion} " f"(={crit_values[criterion]}) ..." ) raise def main(): parser = get_parser() GigaSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) args.lang_dir = Path(args.lang_dir) world_size = args.world_size assert world_size >= 1 if world_size > 1: mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) else: run(rank=0, world_size=1, args=args) torch.set_num_threads(1) torch.set_num_interop_threads(1) if __name__ == "__main__": main()