#!/usr/bin/env python3 # Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, # Zengwei) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads a checkpoint and uses it to decode waves. You can generate the checkpoint with the following command: ./zipformer_mmi/export.py \ --exp-dir ./zipformer_mmi/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch 20 \ --avg 10 Usage of this script: (1) 1best ./zipformer_mmi/pretrained.py \ --checkpoint ./zipformer_mmi/exp/pretrained.pt \ --bpe-model ./data/lang_bpe_500/bpe.model \ --method 1best \ /path/to/foo.wav \ /path/to/bar.wav (2) nbest ./zipformer_mmi/pretrained.py \ --checkpoint ./zipformer_mmi/exp/pretrained.pt \ --bpe-model ./data/lang_bpe_500/bpe.model \ --nbest-scale 1.2 \ --method nbest \ /path/to/foo.wav \ /path/to/bar.wav (3) nbest-rescoring-LG ./zipformer_mmi/pretrained.py \ --checkpoint ./zipformer_mmi/exp/pretrained.pt \ --bpe-model ./data/lang_bpe_500/bpe.model \ --nbest-scale 1.2 \ --method nbest-rescoring-LG \ /path/to/foo.wav \ /path/to/bar.wav (4) nbest-rescoring-3-gram ./zipformer_mmi/pretrained.py \ --checkpoint ./zipformer_mmi/exp/pretrained.pt \ --bpe-model ./data/lang_bpe_500/bpe.model \ --nbest-scale 1.2 \ --method nbest-rescoring-3-gram \ /path/to/foo.wav \ /path/to/bar.wav (5) nbest-rescoring-4-gram ./zipformer_mmi/pretrained.py \ --checkpoint ./zipformer_mmi/exp/pretrained.pt \ --bpe-model ./data/lang_bpe_500/bpe.model \ --nbest-scale 1.2 \ --method nbest-rescoring-4-gram \ /path/to/foo.wav \ /path/to/bar.wav You can also use `./zipformer_mmi/exp/epoch-xx.pt`. Note: ./zipformer_mmi/exp/pretrained.pt is generated by ./zipformer_mmi/export.py """ import argparse import logging import math from pathlib import Path from typing import List import k2 import kaldifeat import sentencepiece as spm import torch import torchaudio from decode import get_decoding_params from torch.nn.utils.rnn import pad_sequence from train import add_model_arguments, get_ctc_model, get_params from icefall.decode import ( get_lattice, nbest_decoding, nbest_rescore_with_LM, one_best_decoding, ) from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler from icefall.utils import get_texts def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--checkpoint", type=str, required=True, help="Path to the checkpoint. " "The checkpoint is assumed to be saved by " "icefall.checkpoint.save_checkpoint().", ) parser.add_argument( "--bpe-model", type=str, help="""Path to bpe.model.""", ) parser.add_argument( "--method", type=str, default="1best", help="""Decoding method. Use HP as decoding graph, where H is ctc_topo and P is token-level bi-gram lm. Supported values are: - (1) 1best. Extract the best path from the decoding lattice as the decoding result. - (2) nbest. Extract n paths from the decoding lattice; the path with the highest score is the decoding result. - (4) nbest-rescoring-LG. Extract n paths from the decoding lattice, rescore them with an word-level 3-gram LM, the path with the highest score is the decoding result. - (5) nbest-rescoring-3-gram. Extract n paths from the decoding lattice, rescore them with an token-level 3-gram LM, the path with the highest score is the decoding result. - (6) nbest-rescoring-4-gram. Extract n paths from the decoding lattice, rescore them with an token-level 4-gram LM, the path with the highest score is the decoding result. """, ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) parser.add_argument( "--lang-dir", type=Path, default="data/lang_bpe_500", help="The lang dir containing word table and LG graph", ) parser.add_argument( "--num-paths", type=int, default=100, help="""Number of paths for n-best based decoding method. Used only when "method" is one of the following values: nbest, nbest-rescoring, and nbest-oracle """, ) parser.add_argument( "--nbest-scale", type=float, default=1.2, help="""The scale to be applied to `lattice.scores`. It's needed if you use any kinds of n-best based rescoring. Used only when "method" is one of the following values: nbest, nbest-rescoring, and nbest-oracle A smaller value results in more unique paths. """, ) parser.add_argument( "--ngram-lm-scale", type=float, default=0.1, help=""" Used when method is nbest-rescoring-LG, nbest-rescoring-3-gram, and nbest-rescoring-4-gram. It specifies the scale for n-gram LM scores. (Note: You need to tune it on a dataset.) """, ) parser.add_argument( "--hp-scale", type=float, default=1.0, help="""The scale to be applied to `ctc_topo_P.scores`. """, ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) add_model_arguments(parser) return parser def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() params = get_params() # add decoding params params.update(get_decoding_params()) params.update(vars(args)) sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) # is defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.unk_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() logging.info(f"{params}") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") logging.info("Creating model") model = get_ctc_model(params) num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") checkpoint = torch.load(args.checkpoint, map_location="cpu") model.load_state_dict(checkpoint["model"], strict=False) model.to(device) model.eval() model.device = device logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = device opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = params.sample_rate opts.mel_opts.num_bins = params.feature_dim fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {params.sound_files}") waves = read_sound_files( filenames=params.sound_files, expected_sample_rate=params.sample_rate ) waves = [w.to(device) for w in waves] logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) bpe_model = spm.SentencePieceProcessor() bpe_model.load(str(params.lang_dir / "bpe.model")) mmi_graph_compiler = MmiTrainingGraphCompiler( params.lang_dir, uniq_filename="lexicon.txt", device=device, oov="", sos_id=1, eos_id=1, ) HP = mmi_graph_compiler.ctc_topo_P HP.scores *= params.hp_scale if not hasattr(HP, "lm_scores"): HP.lm_scores = HP.scores.clone() method = params.method assert method in ( "1best", "nbest", "nbest-rescoring-LG", # word-level 3-gram lm "nbest-rescoring-3-gram", # token-level 3-gram lm "nbest-rescoring-4-gram", # token-level 4-gram lm ) # loading language model for rescoring LM = None if method == "nbest-rescoring-LG": lg_filename = params.lang_dir / "LG.pt" logging.info(f"Loading {lg_filename}") LG = k2.Fsa.from_dict(torch.load(lg_filename, map_location=device)) LG = k2.Fsa.from_fsas([LG]).to(device) LG.lm_scores = LG.scores.clone() LM = LG elif method in ["nbest-rescoring-3-gram", "nbest-rescoring-4-gram"]: order = method[-6] assert order in ("3", "4") order = int(order) logging.info(f"Loading pre-compiled {order}gram.pt") d = torch.load(params.lang_dir / f"{order}gram.pt", map_location=device) G = k2.Fsa.from_dict(d) G.lm_scores = G.scores.clone() LM = G # Encoder forward nnet_output, encoder_out_lens = model(x=features, x_lens=feature_lengths) batch_size = nnet_output.shape[0] supervision_segments = torch.tensor( [ [i, 0, feature_lengths[i] // params.subsampling_factor] for i in range(batch_size) ], dtype=torch.int32, ) lattice = get_lattice( nnet_output=nnet_output, decoding_graph=HP, supervision_segments=supervision_segments, search_beam=params.search_beam, output_beam=params.output_beam, min_active_states=params.min_active_states, max_active_states=params.max_active_states, subsampling_factor=params.subsampling_factor, ) if method in ["1best", "nbest"]: if method == "1best": best_path = one_best_decoding( lattice=lattice, use_double_scores=params.use_double_scores ) else: best_path = nbest_decoding( lattice=lattice, num_paths=params.num_paths, use_double_scores=params.use_double_scores, nbest_scale=params.nbest_scale, ) else: best_path_dict = nbest_rescore_with_LM( lattice=lattice, LM=LM, num_paths=params.num_paths, lm_scale_list=[params.ngram_lm_scale], nbest_scale=params.nbest_scale, ) best_path = next(iter(best_path_dict.values())) # Note: `best_path.aux_labels` contains token IDs, not word IDs # since we are using HP, not HLG here. # # token_ids is a lit-of-list of IDs token_ids = get_texts(best_path) # hyps is a list of str, e.g., ['xxx yyy zzz', ...] hyps = bpe_model.decode(token_ids) # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ] hyps = [s.split() for s in hyps] s = "\n" for filename, hyp in zip(params.sound_files, hyps): words = " ".join(hyp) s += f"{filename}:\n{words}\n\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()