#!/usr/bin/env python3 # Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao) # 2024 Xiaoyu Yang # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads torchscript models, exported by `torch.jit.script()` and uses them to decode waves. You can use the following command to get the exported models: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --epoch 30 \ --avg 9 \ --jit 1 Usage of this script: repo_url=https://huggingface.co/marcoyang/icefall-audio-tagging-audioset-zipformer-2024-03-12 repo=$(basename $repo_url) GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url pushd $repo/exp git lfs pull --include jit_script.pt popd python3 zipformer/jit_pretrained.py \ --nn-model-filename $repo/exp/jit_script.pt \ --label-dict $repo/data/class_labels_indices.csv \ $repo/test_wavs/1.wav \ $repo/test_wavs/2.wav \ $repo/test_wavs/3.wav \ $repo/test_wavs/4.wav """ import argparse import csv import logging import math from typing import List import kaldifeat import torch import torchaudio from torch.nn.utils.rnn import pad_sequence def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--nn-model-filename", type=str, required=True, help="Path to the torchscript model cpu_jit.pt", ) parser.add_argument( "--label-dict", type=str, help="""class_labels_indices.csv.""", ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) return parser def read_sound_files( filenames: List[str], expected_sample_rate: float = 16000 ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0].contiguous()) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() logging.info(vars(args)) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") model = torch.jit.load(args.nn_model_filename) model.eval() model.to(device) # get the label dictionary label_dict = {} with open(args.label_dict, "r") as f: reader = csv.reader(f, delimiter=",") for i, row in enumerate(reader): if i == 0: continue label_dict[int(row[0])] = row[2] logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = device opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = 16000 opts.mel_opts.num_bins = 80 opts.mel_opts.high_freq = -400 fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {args.sound_files}") waves = read_sound_files( filenames=args.sound_files, ) waves = [w.to(device) for w in waves] logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence( features, batch_first=True, padding_value=math.log(1e-10), ) feature_lengths = torch.tensor(feature_lengths, device=device) encoder_out, encoder_out_lens = model.encoder( features=features, feature_lengths=feature_lengths, ) logits = model.classifier(encoder_out, encoder_out_lens) for filename, logit in zip(args.sound_files, logits): topk_prob, topk_index = logit.sigmoid().topk(5) topk_labels = [label_dict[index.item()] for index in topk_index] logging.info( f"{filename}: Top 5 predicted labels are {topk_labels} with " f"probability of {topk_prob.tolist()}" ) logging.info("Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()