#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail # run step 0 to step 5 by default stage=-1 stop_stage=4 dl_dir=$PWD/download fbank_dir=data/fbank # we assume that you have your downloaded the AudioSet and placed # it under $dl_dir/audioset, the folder structure should look like # this: # - $dl_dir/audioset # - balanced # - eval # - unbalanced # If you haven't downloaded the AudioSet, please refer to # https://github.com/RicherMans/SAT/blob/main/datasets/audioset/1_download_audioset.sh. . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "Running prepare.sh" log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage 0: Download the necessary csv files" if [ ! -e $dl_dir/audioset/.csv.done]; then wget --continue "http://storage.googleapis.com/us_audioset/youtube_corpus/v1/csv/class_labels_indices.csv" -O "${dl_dir}/audioset/class_labels_indices.csv" wget --continue http://storage.googleapis.com/us_audioset/youtube_corpus/v1/csv/balanced_train_segments.csv -O "${dl_dir}/audioset/balanced_train_segments.csv" wget --continue http://storage.googleapis.com/us_audioset/youtube_corpus/v1/csv/eval_segments.csv -O "${dl_dir}/audioset/eval_segments.csv" touch $dl_dir/audioset/.csv.done fi fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Construct the audioset manifest and compute the fbank features for balanced set" if [! -e $fbank_dir/.balanced.done]; then python local/generate_audioset_manifest.py \ --dataset-dir $dl_dir/audioset \ --split balanced \ --feat-output-dir $fbank_dir touch $fbank_dir/.balanced.done fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Construct the audioset manifest and compute the fbank features for unbalanced set" fbank_dir=data/fbank if [! -e $fbank_dir/.unbalanced.done]; then python local/generate_audioset_manifest.py \ --dataset-dir $dl_dir/audioset \ --split unbalanced \ --feat-output-dir $fbank_dir touch $fbank_dir/.unbalanced.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Construct the audioset manifest and compute the fbank features for eval set" fbank_dir=data/fbank if [! -e $fbank_dir/.eval.done]; then python local/generate_audioset_manifest.py \ --dataset-dir $dl_dir/audioset \ --split eval \ --feat-output-dir $fbank_dir touch $fbank_dir/.eval.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to $dl_dir/musan mkdir -p data/manifests if [ ! -e data/manifests/.musan.done ]; then lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" mkdir -p data/fbank if [ ! -e data/fbank/.musan.done ]; then ./local/compute_fbank_musan.py touch data/fbank/.musan.done fi fi # The following stages are required to do weighted-sampling training if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare for weighted-sampling training" if [ ! -e $fbank_dir/cuts_audioset_full.jsonl.gz ]; then lhotse combine $fbank_dir/cuts_audioset_balanced.jsonl.gz $fbank_dir/cuts_audioset_unbalanced.jsonl.gz $fbank_dir/cuts_audioset_full.jsonl.gz fi python ./local/compute_weight.py \ --input-manifest $fbank_dir/cuts_audioset_full.jsonl.gz \ --output $fbank_dir/sampling_weights_full.txt fi